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Abstract

Recent observations of shock-induced radiation from oxides, silicates and

metals of geophysical interest constrain the shock-compressed temperature of

these materials. In these experiments, a projectile impacts a target consisting of

a metal driver plate, metal film or foil layer, and transparent window. We

investigate the relationships between the temperature inferred from the

observed radiation and the temperature of the shock-compressed film or foil

and/or window. Changes of the temperature field in each target component

away from that of their respective shock-compressed states occur because of: 1)

shock-impedance mismatch between target components, 2) thermal mismatch

between target components, 3) surface roughness at target interfaces, and 4)

conduction within and between target components. In particular, conduction

may affect the temperature of the film/foil-window interface on the time scale

of the experiments, and so control the intensity and history of the dominant

thermal radiation sources in the target. We use this type of model to interpret

the radiation emitted by a variety of shock-compressed materials and interfaces.

In a series of experiments on films (--_ 1/_m thick) and foils (_-_ 10-100/_m

thick) of Fe in contact with A120 3 and LiF windows, Fe at Fe-A120 3 interfaces

releases from experimental shock-compressed states between 245 and 300 GPa

to interface states at pressures between 190 and 230 GPa, respectively, and tem-

peratures between 4000 and 8000 K, respectively. These temperatures are are

_-_ 200-1500 K above model calculations for Fe experiencing no reshock at ideal

(smooth) Fe-A120 3 interfaces. We attribute this discrepancy to localized dissi-

pation at the Fe-A120 3 interface, producing higher interface temperatures than

uniform compression and energy transfer. This behavior is observed for both Fe

foils and films. Both 190 GPa, localized heating due to gaps or interface-surface

roughness does not apparently affect the temperature of Fe-Al203 interfaces. In
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contrast, from the same range of shock states, Fe at Fe-LiF interfaces releases

to states between 130 and 160 GPa (because it has a lower shock impedance

than A1203); both the data and model imply that Fe-LiF interfaces respond

ideally to shock-compression up to 140 GPa (where the data end). Both the

Fe-A1203 data and the model suggest that the degree of reshock and localized

heating is strongly pressure-dependentabove the solid Fe-liquid Fe phase boun-

dary. LiF appears to be a more ideal window than A1203 also because it is a

poorer thermal inertia (i.e., kp%, where k is the thermal conductivities, p is the

mass density, and % is the specific heat at constant pressure) match to Fe than

is Al203.

In the absence of energy sources and significant energy flux from other

parts of the target, the rate of change of the film/window or foil/window, inter-

face temperature, dT_r(t)/dt, is proportional to -pexp(-p2), where

---- _/2vf'_, _w is the thickness of the high-temperature (reshocked) zone in

the film/foil layer at the film/foil-window interface, _ is the thermal diffusivity

of the film/foil material, and 0(t<tex p (tex p is the time scale of the experiment,

200-400 ns). On this basis, the temperature of a thin (_w<<2v_pt_xp) reshocked

layer relaxes much faster than that of a thick (_ira>>2v_t_×p) layer. We esti-

mate vf_t_xp_-_10 pm for Fe under the conditions of Fe-A1203 and Fe-LiF inter-

faces at high pressure. In this case, a 100-_m-thick reshocked Fe layer would

relax very little, remaining near T_,r(0 ) on the time scale of the experiment,

while a 1-/_m-thick reshocked Fe layer would relax on a time scale of _ 10 nsec,

which is much less than t_xp, to a temperature just above T_,r(oo), i.e., the tem-

perature of the ideal (smooth) interface.

Greybody model fits to radiation from an Fe film-A1203 interface resolve a

gradually increasing effective greybody emissivity, _gb(t), and a gradually

decreasing greybody temperature, Tsb(t ). This behavior is characteristic of most
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Fe-AI20 3 interface experiments. The decrease of Tgb(t ) can be explained in

terms of the reshock model for the film/foil-window interface temperature,

TmT(t ). For this experiment, the model implies that the thickness of the

reshocked film layer, _ is approximately equal to the conduction length scale

in the film, _/_Ftexp (_-_10 _um for Fe). Further, assuming 1) Tgb(t ) = TroT(t), 2)

the thermal inertia of the film is an order of magnitude less than the window,

and _w_2_'_texp, the greybody constrains the temperature rise due to localized

heating through reshock, AT_v , to __,<2000K. A slight decrease of the A120 3

absorption coefficient upon shock compression can explain the slight increase of

_gb(t) with time; this may be consistent with the low-pressure observation that

the refractive index of A120 3 seems to decrease with pressure.

In contrast to the Fe-A120 3 results, greybody fits to radiation from an Fe

foil-LiF interface show a relatively constant greybody temperature, and a

decreasing greybody emissivity. The constant greybody temperature implies a

constant interface temperature, as expected for an interface experiencing

minimal reshock, while the decaying _gb(t) is consistent with a shock-induced

increase in the absorption coefficient of LiF. Setting T_,,r(0 ) = T_b(0), we fit a

simplified version of the full radiation model to these data and obtain an esti-

mate of the absorption coefficient (_-_100 m -1) of LiF shock-compressed to 122

GPa.

Shock-compressed MgO radiates thermally at temperatures between 2900

and 3700 K in the 170-200 GPa pressure range. A simple energy-transport

model of the shocked-MgO-targets allows us to distinguish between different

shock-induced radiation sources in these targets and to estimate spectral

absorption-coefficients, ax_o, for shocked MgO (e.g., at 203 GPa, a_-_6300,

7500, 4200 and 3800 m -1, at 450, 600, 750 and 900 nm, respectively). The

experimentally inferred temperatures of the shock-compressed states of MgO are
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consistent with temperatures calculated for MgO, assuming that 1) it deforms as

an elastic fluid, 2) it has a Dulong-Petit value for specific heat at constant

volume in its shocked-state, 3) it undergoes no phase transformation below 200

GPa, and 4) the product of the equilibrium thermodynamic Gruneisen's parame-

ter, _/, and the mass density, p, is a constant and equal to 4729.6 kg/m 3.

Optical radiation from shock-compressed crystal CaMgSi20 6 (diopside) con-

strains crystal CaMgSi20 8 Hugoniot temperatures of 3500-4800 K in the 150-170

GPa pressure range, while glass CaMgSi206, with a density 87% of that of crys-

tal CaMgSi2Os, achieves Hugoniot temperatures of 3600-3800 K in the 105-107

GPa pressure range. The radiation history of each of these materials implies

that the shock-compressed states of each are highly absorptive, with effective

absorption coefficients of __fl00-1000 m -1. Calculated Hugoniot states for these

materials, when compared to the experimental results, imply that crystal

CaMgSi20 8 Hugoniot states in the 150-170 GPa range represent a high-pressure

phase (HPP) solid (or possibly liquid) phase with an STP density of _4100=i:200

kg/m 3, STP Gr_neisen's parameter of ,_1.5=[=0.5 and STP HPP-LPP specific

internal energy difference, Aei a-_, of 0.9=l=0.5MJ/kg. These results are con-

sistent with a CaSiO3-MgSiO 3 perovskite high-pressure phase assemblage. For

glass CaMgSi20 @ we have the same range of HPP properties, except that Aei a-_

is 2.3+0.5 MJ/kg, a strong indication that the glass CaMgSi20 8 Hugoniot states

occupy the liquid phase in the system CaMgSi20 3. Comparison of the

pressure-temperature Hugoniot of crystal CaMgSi20 8 with the Hugoniots of its

constituent oxides (i.e., SiO2, CaO and MgO) demonstrates the primary

influence of the HPP STP density of these materials on the magnitude of the

temperature in their shock-compressed states. The crystal Di pressure-

temperature Hugoniot constrained by the experimental results lies at 2500-3000

K between 110 and 135 GPa, within the plausible range of temperature profiles

in the mantle near the core-mantle boundary.
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In the context of the above model considerations, we constrain the

Hugoniot temperature of Fe shock-compressed to 300 GPa via thermal radiation

from the Fe film/foil-window interfaces discussed above. The temperature of

the film/foil-window interface is obtained from measurements of the spectral

radiance of the interface, for the duration of the shock transit through the win-

dow, using a 4-wavelength optical radiometer. The model indicates that the

experimental observations constrain the interface temperature, rather than the

the temperature of the AI203 or LiF windows. Our results further imply that

il203 remains at least partially transparent to at least 230 GPa and --_ 9,000 K.

Without correcting the Hugoniot temperatures inferred from the interface tem-

peratures for the effects of reshock, we infer a melting temperature of Fe along

its Hugoniot of 6700±400 K at 243 GPa. Combining these estimates with the

lower-pressure (_<100 GPa) static Fe melting data of Williams and Jeanloz

(1986), we infer a melting temperature for Fe of approximately 7800±500 K at

the pressure of the Earth's outer-inner boundary. Assuming that Fe or an Fe-

light element alloy is forming the inner core from an Fe-light element mixture in

the liquid outer core, this temperature also represents an upper bound to the

temperature at the outer-inner core boundary.

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO

provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO

systems in the pressure range corresponding to the earth's outer core. The

liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986)

places constraints on the temperature and other properties along the liquidus

above the range of their data. The temperature along the best-fit Fe liquidus is

5000 K at 136 GPa and 7250 K at 330 GPa, which is somewhat lower than that

implied by the Hugoniot results (_ 7800 K). This discrepancy may be due to

the reshock effect discussed above, or some inaccuracy in the extrapolation,

presuming the Hugoniot results represent the equilibrium melting behavior of
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Fe. Constraints on the solidi of FeS and FeO from the comparison of data and

solid-state model calculations imply that FeS and FeO melt at approximately

4610 K and 5900 K, respectively, at 136 GPa, and approximately 6150 K and

8950 K, respectively, at 330 GPa. Calculations for the equilibrium thermo-

dynamic properties of solid and liquid Fe along the coincident solidus and

liquidus imply that the entropy of melting for Fe is approximately independent

of pressure at a value of approximately R (where R is Ryberg's constant), while

the change in the molar heat capacity across the transition increases with pres-

sure from approximately 0.5 R to 4R between standard pressure and 330 GPa.

We use these constraints to construct ideal-mixing phase diagrams for Fe-FeS

and Fe-FeO systems at outer core pressures, assuming that Fe and FeS, or Fe

and FeO, respectively, are the solid phases in equilibrium with the liquid Fe-FeS

or Fe-FeO mixtures, respectively. The composition of the Fe-X (X---_O or S)

liquid mixture relative to the eutectic composition of the Fe-FeX system deter-

mines whether Fe or FeX will solidly at the liquidus. For these ideal mixing

calculations, the eutectic composition is controlled by the ratio of the end-

member (i.e., Fe and FeX) melting temperatures at a given pressure. If Fe and

FeE have the same melting temperature, for example, the eutectic composition

is 25 mole % X; if the melting temperature of FeX is greater or less than Fe,

the eutectic composition will be displaced to more Fe or FeX rich compositions,

respectively. Since, as quoted above, the melting temperature of FeO is about

1500 K greater than that of Fe at 330 GPa, which is in turn about 1000 K

greater than that of FeS at this pressure, we note that calculated Fe-FeO eutec-

tic compositions at 330 GPa (15-20 mole % O) are less than 25 mole % O, while

calculated Fe-FeS eutectic compositions at 330 GPa (23-30 mole % S) are gen-

erally greater than 25 mole _o S. The mass density of the Earth's outer core

just above the inner core boundary is approximately 12160 kg/m 3, and we note

that this is also the density of an ideal mixture of 93 mole 9v Fe and 7 mole _v
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S (i.e., 14 mole % FeS), and a similar mixture of approximately 72 mole o_ Fe

and 28 mole o_ O (56 mole o_ FeO). Consequently, these calculations and con-

siderations imply that an O-rich outer core is more likely to lie on the FeO-rich

side of the Fe-FeX eutectic, while an S-rich outer core is more likely to lie on

the Fe-rich side of the Fe-FeX eutectic.

The temperature of the Fe-FeS eutectic are lower than the Fe-FeO eutec-

tic, being approximately 5000 K at 330 GPa. Note that the eutectic tempera-

ture represents a lower bound to temperatures at the outer-inner core boundary

under the hypothesis that this boundary represents the liquidus in an Fe-X mix-

"l'..r_, l_..f._,,'.f.i,,. ,_n,'-I _A_m,,_ko,..-,_I÷_._,. ÷ ...... _-..... :_ l-.^.,-1-..t-.^ _^ T;',__ and

Fe-FeO systems imply, in the context of the outer-inner core boundary-phase

boundary hypothesis, that previous widely-accepted temperature profiles for the

outer core, ranging from _3000 K at the 136 GPa, the core-mantle boundary,

to _4200 K at 330 GPa, the outer-inner core boundary, are about 1000-1500 K

too low. This possibility implies that at least one boundary layer of 1000-1500

K exists in the mantle, possibly at its base in the D" region.
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Introduction: Shock Compression and Continuum Mechanics

In this thesis I explore certain aspects of the thermomechanical response of

selected silicates, oxides and metals of geophysical interest to shock compres-

sion, via observations of shock-induced optical radiation from these materials.

Although microscopic processes lie at the heart of each phenomenon, the experi-

mental foundation of our work requires an interpretive, conceptual framework

much more abstract and general than any particular microscopic physical

theory can provide. This framework is provided by continuum mechanics,

which enfolds and abstracts the "physics" of countless microscopic models and

viewpoints, via their _tnnrnnr|_te m_.ernRenn|e /'P. n thprmnAvn_m|o_ ]irnlf.
................... A"r- -_ ............. A"" - k''O'_ .," ..... J ........

With this framework, we have a representation of the phenomena partial to no

particular "microphysics," and so accessible to all. The purpose of this intro-

duction is to outline and detail the continuum framework we use to represent

and interpret experimental results on shock-compressed materials.

In our experiments, a projectile impacts a target at velocities between 4.5

and 6.5 kin/s, generating a shock wave in the target. This target is usually

composed of two or three different materials sandwiched together in a plane-

layer-style geometry (see Figure 2.1, Chapter I). From the physical viewpoint,

the shock wave is a three-dimensional region with some thickness 6 (typically

_10 -sm in the materials of interest here: Kormer, 1968), and propagates

through the material with a velocity of propagation u (typically [u I ""103--4

m/s). Shock compression produces large (factor of 2 to orders of magnitude)

changes in any given local thermomechanical (TM) field, i.e., TM field density,

g, (e.g., mass density, p; note that ¢ may be a scalar, vector or higher-order ten-

sor in what follows), over 6 and on a very short time scale (i.e.,

r'_-_S/ I U ["_10 -11-12 seconds), resulting in large gradients (--_ 1¢[/6)in these

TM fields across the shock-front region. We assume that these length and time

scales are sufficiently short so that, from the macroscopic viewpoint, they may
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be idealized as infinitesimal and instantaneous, respectively. In this case, we

may idealize the shock front macroscopically as a moving surface, which we

designate as IE_-E(t). This surface divides the material, which we idealize as a

body B_B(t), with material boundary OB--OB(t), occupying the spatial volume

V-_-V (t) in Euclidean three-space, with spatial boundary OV--OV (t), into spa-

tial regions "ahead" (+ region, Figure I.la) and "behind" (- region, Figure I.la)

the shock front. This surface representation for the shock front is defined by

the limit 6--+0, and we note that, in this limit, the gradients of ¢ across the

shock front (mathematically) become infinite. Consequently, ¢ loses a continu-

ous representation in V, being (mathematically) discontinuous across ZI in this

representation. In this case, the surface IE is referred to as singular (Truesdell

and Toupin, 1960, Sect. 173) with respect to ¢, such that

[[¢[1 ---- _b-- ¢+ _ 0 [I.1]

where [[¢[] is the "jump" of ¢ across IE, and ¢+ and ¢- are the limiting values

of ¢ "just" ahead and behind E, respectively. Note that IE is oriented such

that u-V>O, where V is the unit normal vector to IE (Figure I.la), and (-)

represents the inner vector product operator. This concept of a singular surface

forms the basis for the continuum mechanical description of shock compression.

We assume that E possesses no fields or properties other than a motion (i.e., u;

it can be much more complicated). As is commonly done, we write all and

higher-order teusors in boldface or component form in what follows, and the

summation convention applies for all diagonally-repeated roman or greek

indices.

Since ¢ usually changes with time during the experiment, we need to for-

mulate relations for how ¢ changes with time in V, and across c3V and IE, i.e.,

we need to formulate a balance relation for ¢. We are particularly interested in

a balance relation for ¢ across E when E is a shock front, but for now IE
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represents any singular surface for _.

viewpoint, we can really

"amount" of ¢ in V, i.e.,

Now, from the macroscopic-experimental

only formulate a balance relation for the total

---- @(t) _ JCdv [I.2].
v

Following the classic approach, we let B--*V deform and keep track of the

instantaneous value of _. In particular, we assume q_ may change with time

via 1) production of tb in V, i.e.,

P(t;--P,.)(t) ---- fo_,,,_dv [I.3]

v

and 2) the net total transport of ¢out of V through OV, i.e.,

- [I.4]
ov

In [I.3], P(.) is the total production and/or supply, p(¢) is the production-supply

density of ¢ in V, which is assumed continuous in V. Also, in [I.4], F(.) is the

net amount of ¢ transported out of V, f(¢) is the net efflux of ¢, or flux of

out of, V, fi is the unit outward normal vector to _V, da is an infinitesimal

area element on OV, and f(¢) is assumed continuous on OV. With these, the

instantaneous rate of change of @ in B is represented by the global balance, i.e.,

d_ [I.5]dt -_ P(_ - F(_)

or

d
g V OV

[I.Ol

Assuming that tb and its first partial derivatives are continuous in V, the Rey-

nolds' transport theorem (e.g., Truesdell and Toupin, 1960, Sect. 81) implies
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that the change in the total amount of ¢ with time is also given by

-_ fCdv ----f[0t¢ + V-(Ov)ldv [1.71
V V

In [I.7], _7 is the spatial gradient operator, and v is the displacement velocity of

the material since V and OV instantaneously coincide with B and 0B, by

definition. In this sense (i.e., instantaneous), V is a fixed material volume, and

aV a fixed material boundary. If we further assume that ¢ and v are continu-

ous on 0V, and that 0V encloses V, Gauss' divergence theorem (e.g., Truesdell

and Toupin, 1960, Sect. 130) implies that

fv.(_) - fc_-_da
V OV

Using [I.61-[I.S], then, we may write

f = fp,¢,d,-
V V OV

[I.S].

[1.9]

or

f 0 ¢d,--fp(¢)d, -f v [I.10]

V V V

assuming that f(¢) and its first partial derivatives with respect to space are con-

tinuous in V. We note that [I.9] and [I.10] are valid only when B does not con-

tain E, since if B does contain E, ¢, v and p(¢) are then in general not continu-

ous in V. Also, in this case, f(¢) and v are generally not continuous on 0V, and

since E splits 0V, it no longer encloses V: and Gauss' divergence theorem is no

longer valid. Consequently, when B contains E, we cannot use the transport

and divergence theorems as done in [I.6]-[I.8] to instantaneously balance ¢ in V

as a whole. However, since the discontinuities in _b, etc., are restricted (i.e.,

localized and isolated) to the shock front, we are free to assume that ¢, etc., are
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continuous in part or all of V + and V-. In this context, consider an arbitrary

subregion of V, designated v---v (t) (Figure I.lb), that encompasses part of E,

designated a, such that v is naturally divided into regions v + and v- ahead

and behind a, respectively. We assume ¢, etc., are continuous in each of these

regions, and suffer at most a jump discontinuity of the form [I.1] across a. The

extent of this subregion relative to V is controlled only by the continuity

assumptions imposed on ¢, etc., and their first partial derivatives.

Noting that the shock front forms part of the boundary of each of these regions,

let a + represent this boundary, for v + , and a- that for v- (Figure I.lb). Then

we may draw an entire (i.e., closed) boundary around v + , i.e., by + U a +, and

around v-, i.e., Or- U a-, where U represents the operation of union in the set

theoretic sense. Since Ov + and Or- are, by assumption, instantaneously

material boundaries, they move with the material displacement velocity, v;

however, a + and a- move with the displacement velocity, u, of the surface, a.

Defining a general displacement velocity w such that

v on (gv ±w --= [I.lO]
U on o ":k

and letting fi+ and fi- be the outward-facln_ unit normal vectors to Ov + U a +

and Ov-U a-, respectively, we may write a transport relation for ¢ in each of

these subregions, i.e.,

d fCd + v-(_/rw)ldvdt_+ = d'-t-
V÷ V'4-

- fo,¢av + + [I.11]
,04" (_ V "1" 0.4"

and

d
= -g- fWdv =ftat + V-(C_v)ldv

V- y-
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v- Or- a+

Note that we have ¢--*_b + on e + and _b--+q:- on e-, by their definition above, in

the integrals over the singular surface. Now in Figure I.lb, we see that fi and

are oriented in opposite directions on a + but in the same directions on a-. In

this ease, fi+=-ft on e +, but fi-:k on a-. Putting these into [I.11] and [I.12],

we have

and

d_,I,+= fa_d_ + f _,-_+d_-f¢÷u-_d_ [I.13]
v+ 8v + a+

--fpc,_:v-fr{,,e,+d_
tt + 611 +

[I.14],

d:-----fo_._+f_ d_+f¢u_,d_ [1.15]

- at,- a+

- fp(¢:_ - fr/,)-Vd_
t/- _t)-

[I.16],

where [I.14] and [1.16] come from the general balance,

regions v + 12 Ov + U a + and v- U Or- U a-, respectively.

[I.15] together, we obtain

[1.5], applied to the

If we add [1.13] and

dd,I,++ *-} --fOtCdv +fOtCdv
t/+ t/-

+ f _._+d_+ f ¢_._-a_+f tl_llu-_d_
8v + By- a

[I.15].

From [1.14] and [I.16], we also have

v + _- Ot_+ Or-

[I.16]



-8-

Since, by assumption, • is additive in v, we have

Further, we note that

and

= @+ + _- [I.17].

v-v+uv _f- f =f+f
l,t tl+U t;- v + _-

o_=o_+_o_ --,f- f ;f +f
Ov 8_+U By- Ov + By-

[1.18],

[1.191 ,

_--_+_--. f-- f -f +f [1.20].
a a+U a- a+ a-

Also, note that fi+=fi- on Ov. With these, we may write [I.15] as

a,_-- f o,v:a_+f _,.e,a_+f[l¢l]u4,da [I.21],
v Ov a

which is the form of Reynolds' transport relation appropriate for balancing ¢ in

an arbitrary region of V where !b possesses at most a surface (i.e., isolated)

discontinuity. Combining [1.16] and [I.21], then, we obtain the instantaneous

balance relation for ¢ in v (t) containing a part of the singular surface a(t), i.e.,

v Ov + Or- a

---fp(,_)d,,-fr(,,).e,+a_-frl_,re,-a_
O_+ Or-

or

[1.221.

Note that, if there is no singular surface in v, [1¢1]=0and [I.22] reduces to the
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classic instantaneous balance relation for _, i.e.,

v #v v Ov

To obtain an instantaneous balance relation for • on a, we assume that the

functions 0re and p(q:) are bounded in v, and that v and f(¢) are defined and

continuous on both v+U Ov+U a + and v-t00v-U or- such that v + and f(_)

are the limiting values of v and f(¢), respectively, as cgv + --+a +, while v- and f(_0)

are similar limits for v and f(¢), respectively, as Or---.+a-. With these assump-

tions, the volume integrals in [I.22] vanish in the limit Ov-.-+or. In this case,

[I.22] becomes

ft¢÷v++ rc;_J-a÷d_+ft¢-_-+ r_J.a-d_+ftl¢llu-_d_= 0 tI._al
0 "+ O'- O"

As noted above to obtain [I.14], fi+-----b and fi---b on a. Putting these into

[I.24], we have

f [1_--_)-f(_l]._d.= 0 [:._5]
¢r

which is the balance relation for @ on a.

In an appropriate coordinate system, the component form of [I.22] may be

written,

and

Afo::dv+f<_'+fI_,)_,d_+f
cgt, a

[1¢1]uk _k da = fp(¢)dv [I.2o]
Y

f []¢(u k -v k ) - f(_)l]bk da = 0 [1.271

{Y

(k =1,2,3) respectively. If the fields ¢, uk vk, vk bk , and f(¢)t,kk ^ are
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homogeneous on 2E(t), then a(t) and da are arbitrary, and [I.27] takes the local

form

[I¢(uk_ k)_fI )l] 'k= o

and this is similar to the results of Truesdell and Toupin (1960,

Alternatively, if there is no singular surface propagating through

[I.2S]

Sect. 193).

V, and all

relevant fields are homogeneous in VUOV, v

reduces to its local form:

0re + k+f¢¢)],k

and dv are arbitrary, and [I.27]

= p(¢) [1.29].

Since [I.25]-[I.29] are based solely on so-called "kinematic" considerations, they

have no concrete physical meaning at this point. To give them such meaning,

we identify q: with the TM fields that are balanced, or conserved, during the

deformation of B(t). These are summarized in the following table:

Table 1.1

q: f(¢) P(¢)

Mass p 0 0

Momentum pv k -t km pb k

Energy p(e+2v k v k ) qk _v m tkm pv k b k +pr

Entropy ps T-lq k P(s)

In this table, t km are the components of Cauchy stress tensor, b k represents the

components of the body force, e is the specific internal energy, qk are the com-

ponents of the heat flux vector, r is the specific internal energy supply, s is the
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specific entropy and T is the absolute temperature.

The relations [I.27] and [I.28] are valid for any singular surface in the con-

text of the assumptions used to obtain them. Since we are interested in a par-

ticular kind of singular surface, i.e., the shock front, we may further reduce

[I.28], using Table 1.1, to the relations used for interpretation of experimental

results, as follows. Defining U k _u k - v k as the velocity of propagation of a,

we may substitute the different manifestations of ¢ from Table 1.1 into [I.28] to

obtain

[lpu(_){]- 0 [I.301

[l:U(_)vk{l+ [Itkl]= 0

the balance of mass,

the balance of momentum,

[{pU(a)(e-{-21--vk vk ) -{-(vm tm -q(a)){]

the balance of energy, and

[I.311

= 0 [I.321

[{pU(_)s- "r-{q(_){]_>o [I.33]

the balance of entropy, where the last is an inequality via the requirement of a

nonnegative entropy production across the shock front. In these relations,

U(_,)----Uk_k is the component of the propagation velocity normal to

a, tk ------tkm _,n are the components of the Cauchy stress vector, and q(_)__qk _k

is the component of the heat flux normal to a. The mass balance, [1.30],is the

first of the relations we use to interpret experimental results.

may simplify [I.31], [I.32] and [I.33] to

± ± kp v(_)[{v{1+ [{tk{l= 0

p±U(_)[{(e-}-_vkvk){]-{-[{v,ntm - qff,){]----0

Using [I.30], we

[I.34],

[I.35],
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and

p+U(_)[Isl]- [[T-lq(_,)l] >0 [I.36],

respectively. Note that [I.34]-[I.36] represent 5 equations in 24 unknowns:

p+, U(_, v k +, t k +, e +, q(_, s ± and T +.

From the physical viewpoint, shock compression produces a "sudden"

change in the velocity of the material in a direction normal to the the shock

front. In the context of the singular surface representation of the shock front,

we idealize this change as a discontinuity in the component of the material velo-

city normal to a, i.e.,

[lv(_,)l]_o

Also, note that [lu k I]=0.where v(_) -- v k uk-

[I.36], we must cast these relations into normal and tangential forms.

this, we define rak (a=l,2) as vectors tangent to a such that

_,k= (rl× r2)k
I "l×"_ I

[I.371

To substitute [I.371 into [I.34]-

To do

[I.381,

i.e., _, _'1 and r 2 form a right-handed system. In [I.38], X represents the outer

vector product operator. With these, we may resolve any vector into com-

ponents normal and tangent to Z;. In this case, we may write

vk = v(_)_k + v(_r_

and

t* = t(_)ak + t(_r2

Noting that

[I.39]

[I.40].

[I.411,

and, assuming a is planar, that
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1o _#__ _ = _ = _=_

we may put [I.39] and [I.40] into [I.34]-[I.36] and obtain

± ±p uw)[Ivw)l]+ [It(_)l]= 0

p+u(_)[Iv(?)l]+ [[t(?)ll----0

P±Uc_)[le+ _(vC_)+v(_),_(_"))ll+ [Iv t +v,,t ?- . I1(_,)(_,) ( ) ( ) q(_,)

and

[1.421

[1.43]

[1.44]

= 0 [I.45]

p±u(_[!_l]-[!T-'q<c)!]_0 [I.461.

At this point, we make the mechanical constitutive assumption that the

material on either side of the shock front is an elastic, or barotropic, fluid, i.e.,

t km+ ---- -e+6 km [I.47]

With this, we have

via [I.34], and

t,(a)± -- t k ±f% -- f% t k'_ ±Pro -- -P±_k f/k _ _p+

t(r_+ -- tm +rm a ---- uk t_ ±rm a -- -P+_'k r_ -- 0

Putting [I.48] and [I.4g] into [I.43]-[I.46], we obtain

[Iel]= ± ±p Vc_)[Iv(_)l]

± ±p Vc_)[Ivc_l]= o

lv2 I1p±u(_)[le+ _- (_). + [Ivc_,)tw)-q(_,)l]= o

from [I.4112.

[I.48]

[I.491

[Ls0],

[I.51],

[L52],

[1.53],

Relation [I.50] is the second

and

p±Uc_)[Isl]-[IT-'q(_)l]>__0

wherewe haveused [I.511in [I.45]toobtain [I.52].
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of the relations used to interpret experimental results.

balance, [I.43], we may write

p+U+[llv2 I1(_)t,_ (_),J+ [Iv(_)t(_)I]=

Using the momentum

l(v+÷-_V- t+_ 11111

Putting this into the energy relation, [I.52], we obtain

± ± 1 - + + - 1
P U(_)[lel] = _(v(_)t(_)-v(_)t(0))- _[Iv(_)t(_,)l] + [Iq(_)l]

=-{-[Iv(_)ll(t(+)+t(:_))+ [Ick_)l]

From the mass balance, we have

1

[Iv(_)l]---T[Ipl]U(:_)

[I.541

[I.55].

[I.561.

Putting this into [I.55], we obtain

1 1 [ipll(t(+)+tC_)) + 1 [1%)1]
[lel]= 2 p-p+ p±u(_)+

1 1-- -_-[J II(P++ P-) + _±U ± [Iq(0)l] [1.571.
(a)

where we have used the elastic fluid constitutive assumption represented by

[I.47]. Finally, if we make the nonmechanical constitutive assumption that the

shock front is adiabatic, i.e., [Iqff,)l]----0, [I.57] reduces to

2{ 1 1 }(p++p_) [1.58][fell=7+ P-

which is the third relation used to interpret experimental shock-compression

data. Relation [I.58] is known as the Rankine-Hugoniot relation (e.g., Rice et

al., 1958). With the assumption of adiabaticity, [I.53] reduces to

1 +
p±v(_)[Isl]>_[l¥1]q(_) [I.59]

±--0ff we further assume there is no heat flow throughout V U cOV such that q(t,)-- ,
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[I.59] reduces to

[Isl]_>0

implying that the specific entropy must increase across an adiabatic shock front

separating two non-heat-conducting, elastic fluids, which is usually assumed the

case (e.g., Bethe, 1942) for shock-compression experiments. Relations [I.30],

[I.50] and [I.581 represent the balances of mass, momentum and energy, respec-

tively, used in the following chapters to interpret experimental shock-

compression results, and for various related calculations of Hugoniot, or shock-

compressed, states. Along with [I.60], they constitute a thermodynamic descrip-

tion for the "experimental" shock front.

The shock front represents a kind of boundary in the target, across which

we may use, given the necessary experimental or other information, [I.30], [I.50]

and [I.58] to calculate the change in density, material velocity, pressure, specific

internal energy, etc., during shock compression. As stated above, however,

different materials make up the target, introducing a further "discontinuity"

into the field description of the target as a whole. Consequently, we must also

find the balance of mass, momentum, energy and entropy across the boundaries

between target layers. Since we assume that, as each target layer is compressed

and the shock front passes on into the next target layer during the experiment,

the layers do not separate or blow apart at their interface, this boundary may

--v + U ±--0. Thisbe regarded as a material surface, such that u(_) (_), or (_)

states that, at a material surface or interface, the surface moves with the dis-

placement velocity of the material on either side of it. Consequently, at such an

interface, the balance of momentum and energy take on the forms

[[t(_)[]-- 0 , [[t(_)[l = 0 [I.61]

and
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[Iv(_)t(_)+v(r)at(r_-q(_)]] = 0

respectively, from [I.43]-[I.44] and [I.45], respectively.

quality, [I.46], simplifies to

> 0 [1.631

Substituting the mechanical constitutive assumption, [I.47], into [I.61], the bal-

ance of momentum at a material interface in the target takes the form

[IPI]= 0

Likewise, the balance of energy becomes

[[v(_)P]]+ [[q(_)]]= 0

Note that [I.63] is unaffected by this assumption.

p.82]

Further, the entropy ine-

[I.65].

If we further assume that

heat flux and temperature are continuous across the boundary between each

layer, as we do in all energy-transport models presented in this thesis (see

Chapter I, Appendix C), [I.65] and [I.63] reduce to

[Iv(_)PI] = 0 [I.66],

and

± 1
-q(_)[[T]] = 0 [I.s7l,

respectively. Note that [I.67] implies no entropy production on the boundaries

between the target components. Relations [1.64], [I.66] and [I.67] then represent

boundary conditions appropriate for the assumed constitutive nature of each

target component, and consequently are consistent with the analogous shock-

front relations given above. We note that the balance of momentum across the

shock front, [I.50], combined with [I.65] for the balance of momentum at the

boundary between adjacent target components, forms the basis for the

impedance match technique (e.g., Rice et al., 1958), which is used to calculate

[I.64].
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the density, pressure, etc., of the high-pressure,shock-compressedstates of each

target component throughout this thesis.
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Abstract

Recent observations of shock-induced radiation from oxides, silicates and

metals of geophysical interest constrain the shock-compressed temperature of

these materials. In these experiments, a projectile impacts a target consisting of

a metal driver plate, a metal film or foil layer, and a transparent window. We

investigate the relationships between the temperature inferred from the

observed radiation and the temperature of the shock-compressed film or foil

and/or window. Changes of the temperature field in each target component

away from that of their respective shock-compressed states occur because of: 1)

_..v,.,,-,..._,=u,_..,_ ,_,_...,,v,_.. _,_,,_,. _l _=_ components, bll_l III_LI llllDlll:etb_ll

between target components, 3) surface roughness at target interfaces, and 4)

conduction within and between target components. In particular, conduction

may affect the temperature of the film/foil-window interface on the time scale

of the experiments, and so control the intensity and history of the dominant

thermal radiation sources in the target. Comparing this model to experimental

data from Fe-Fe-A1203 and Fe-Fe-LiF targets, we note that:

. Fe at Fe-A120 z interfaces releases from experimental shock-compressed

states between 245 and 300 GPa to interface states between 190 and 230

GPa, respectively, with temperatures _ 200-1500 K above model calcula-

tions for Fe experiencing no reshock at smooth Fe-A1203 interfaces. This is

so for both Fe foils and films. Below 190 GPa, reshock heating does not

apparently affect the temperature of Fe-Al203 interfaces. In contrast, from

the same range of shock states, Fe at Fe-LiF interfaces releases to states

between 130 and 160 GPa (because it has a lower shock impedance than

A1203). The data and model imply that Fe experiences little or no reshock

at Fe-LiF up to 140 GPa (where the data end), suggesting 1) that LiF

forms a more ideal interface with Fe than does A1203, or 2) that the Fe-LiF
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.

.

interfaces experience less shock heating than Fe-A1203 interfaces because

Fe-LiF interfaces reshock to lower pressures. Both the Fe-A1203 data and

the model suggest that the degree of reshock is strongly pressure-dependent

above the solid Fe-liquid Fe phase boundary. LiF appears to be a more

ideal window than A1203 also because it is a poorer thermal inertia match

to Fe than is A1203.

In the absence of energy sources and significant energy flux from other

parts of the target, the rate of change of the film (.-_1 _m thick)/window

(3-4 mm thick), or loll (-_ 113-1130 l+m thiek_/windnw, interfn.ee ternnern.-
........ g ........... 21 ........ 7 .............. X'+" -- --

ture, Tn, r(t), is proportional to-pexp(-p2), where p _ _-w/2v/'_, _-w is the

thickness of the reshocked zone in the film/foil layer at the film/foil-

window interface, _ is the thermal diffusivity of the film/foil material, and

0<t<tex p (tex p is the time scale of the experiment, 200-400 ns). On this

basis, the temperature of a thin (f_<<2v/_t,xp) reshocked layer relaxes

much faster than that of a thick (_w>>2v/'_ptexp) layer. We estimate

x/"r_t_xp-_10 _m for Fe under the conditions of Fe-A120 z and Fe-LiF inter-

faces at high pressure. In this case, a 100-_m-thick reshocked Fe layer

would relax very little, remaining near Tn, r(0 ) on the time scale of the

experiment, while a 1-_um-thick reshocked Fe layer would relax almost

instantaneously (i.e., on a time scale much less than t,xp) to a temperature

just above Tm(oo ).

Greybody fits to an Fe-Fe film-A120 z experiment produce a gradually

increasing effective greybody emissivity, _gb(t), and a gradually decreasing

greybody temperature, Tsb(t ). This behavior is characteristic of most Fe-

Fe-A1203 experiments. The decrease of Tgb(t ) can be explained in terms of

the model for the film/foil-window interface temperature, Tn, r(t). For this
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experiment, the model implies that the thickness of the reshocked film

layer, _ is approximately equal to the conduction length scale in the film,

v_tex p (_10 _um for Fe). Further, assuming Tgb(t ) = Wn,rr(t), the greybody

fit constrains the amount of reshock, /XT_v , to ..._2500K with a_-_0.1 and

_w_..2 _v/'_exp. A slight decrease of the A120 3 absorption coefficient upon

shock compression can explain the slight increase of _gb(t) with time; this

may be consistent with the observation that the refractive index of A1203

seems to decrease with pressure.

.
Ill _;Ullbl _cl_b bU bll_ 1" _"1" t2"/1.12_ 3 l_Ulb_) _l-Uy UUUJ/ llb_ bU UF, cl,b :,'t llUlll _tll 1" _-1'

foil-LiF target show a relatively constant greybody temperature, and a

decreasing greybody emissivity. The constant greybody temperature

implies a constant interface temperature, as expected for an interface

experiencing minimal reshock, while the decaying _sb(t) is consistent with a

shock-induced increase in the absorption coefficient of LiF. Setting

W_.r(0 ) = Tsb(0), we fit a simplified version of the full radiation model to

these data and obtain an estimate of the absorption coefficient (_--100 m -1)

of LiF shock-compressed to 122 GPa.

§1. Introduction

Traditional studies of the behavior of shock-compressed materials assess

the mechanical response of these materials to shock compression (e.g., the

change of density with pressure). Since this approach cannot directly constrain

the temperature of the high-pressure state, other means are needed to provide a

complete equilibrium thermodynamic description (i. e., pressure-density-

temperature) for these materials. To this end, recent studies record shock-

induced radiation from initially transparent materials (e.g., alkali halides, sum-

marized by Kormer, 1968; A1203, Urtiew, 1974; SiO 2 and Mg2SiO4, Lyzenga and
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Ahrens, 1980) and from opaque materials at interfaces viewed through trans-

parent or semitransparent windows (e.g., Mg, Urtiew and Grover, 1977; Ag,

Lyzenga, 1980; Fe, Bass et al., 1987). These recent observations constrain some

temperature in the target. In this paper we explore relationships between the

experimentally constrained temperature and the temperatures of different high-

pressure states achieved in the target components and at their interfaces during

the experiment. We attempt this in the context of a simple model of energy

transfer and transport in the targets. To give the model considerations some

weight, we compare model details and results to the recent observations of Bass

et al. (1987) on shock-induced radiation from Fe films and foils.

§2. Model Considerations

Consider the target depicted in Figure 2.1, representative of that used in

the experiments of Lyzenga (1980) and Bass et al. (1987). This generic target

consists of 1), a 1.5-ram-thick, metallic "driver" plate (DP), 2), a metallic film (1

to 10-_m-thick) or foil (10 to 100- _m thick) layer (FL) and 3), a dielectric,

transparent window (TW, 3 to 4-ram-thick). The target is constructed so that

the shock impedance (i.e., the product of the initial density and shock wave

velocity) of the DP is greater than or equal to that of the FL, which in turn has

a shock impedance greater than or equal to that of the TW. An edge mask

(Figure 2.1) prevents the detectors from recording radiation from the edge of

the target assembly. Radiation emitted from the center of the assembly, where

uniaxial compression takes place, reflects from the mirror into the detectors.

The experiment begins when a projectile impacts the DP (Figure 2.1), gen-

erating a shock wave that propagates through the DP to the DP-FL interface.

Since this interface is formed by mechanical juxtaposition of the metallic DP

and FL surfaces, it is "rough" on a ,-_1 _um-scale (Urtiew and Grover, 1974).

The shock front thickness is _._0.01 _m in the materials and at the pressures of
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interest (e.g., Kormer, 1968). With respect to the shock wave, then, the DP

and FL surfaces are, prior to compression, partially free. Consequently, the

shock wave accelerates the DP material at the DP-FL interface across the gap,

and simultaneously reflects from the DP surface at the DP-FL interface as a

release wave propagating back into the DP and releasing the DP to near-zero

pressure. This moving DP surface then impacts the FL surface, generating

shock waves of approximately equal magnitude that propagate backward into

the just released DP, and forward into the unshocked FL. The former shock

wave compresses the just released DP material from its low-pressure, high-

temperature release state to one with approximately the same pressure as its

previous shock-compressed state; wave reverberations quickly bring this DP

state to a state with a pressure equal to that of the shock-compressed FL and a

temperature well above that of the previous (i.e., first)DP shock-compressed

state. If the backward-propagating shock wave overtakes the release wave at

some distance behind the DP-FL interface, this distance defines the thickness of

a reshocked DP material layer at the DP-FL interface. However, if the release

wave is faster than the reshock wave, the entire DP may experience low pres-

sure release and reshock. In either case, subsequent wave reverberations quickly

bring the DP to a state with the same normal (to the interface) material veloc-

ity and stress fields as the shocked FL.

Since the DP material accelerating across the DP-FL interface impacts a

rough FL surface, a thin (on the scale of the surface roughness) layer of film or

foil material compresses, much like a porous material (Urtiew and Grover,

1974), to a much higher temperature than achieved by the shock-compressed FL

material beyond this zone. As with the DP material at the DP-FL interface, the

shock front traversing the FL reflects from a partially free surface at the FL-

TW interface as a low pressure release wave and accelerates the FL material

across the interface to impact with the TW material. Since the TW surface at
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this interface is smooth relative to the shock front thickness, and is much more

incompressible than either the DP or FL, the impacting FL material should not

heat a thin layer of TW material, but rather only shock the TW up to high

pressure and its Hugoniot temperature. Closure of the FL-TW interface gen-

erates backward and forward traveling shock waves, and the former wave

compressesthe low pressure, high temperature, released FL material to a state

with approximately the same pressure as the first FL shock-compressed state;

wave reverberations quickly bring this FL state to a state with a pressure equal

to that of the shock-compressed transparent window (shocked window: SW)

and a temperature much-higher than the first FL shock-compressed state. If

the backward-propagating shock wave overtakes the releasewave, it cuts off the

zone of release/reshock in the FL material. In this case, the combined wave

releases the remaining FL material, and then the DP, to a state with approxi-

mately the same normal velocity and stress as the SW. Alternatively, if the

shock wave does not overtake the low pressure release wave, the entire FL

and/or DP is releaseand reshocked. In either case,subsequent wave reverbera-

tions should quickly bring both the DP and FL to states possessingnormal

stress and material velocity fields equal to those of the SW.

Since the reshocked layers at each interface are significantly hotter than

the surrounding material (seeUrtiew and Grover, 1974, and discussion below),

the temperature and radiation histories of targets with smooth versus rough

interfaces should be quite different. This difference should be sufficiently dis-

tinct to be experimentally resolvable, as we show below. We investigate the

dependence of the radiation history on the nature of the interface by use of

both mechanically formed foil-TW interfaces and vacuum-coated film-TW inter-

faces. In particular, we expect the vacuum-coated film-TW interface to be

much smoother than the mechanically formed foil-TW interface. However, this

assumption turns out to be somewhat naive, as shown below. Since the TW



- 26-

surface at the FL-TW interface is smooth (defined above), we presume that any

roughness of this interface is due to roughnessof the FL surface there.

As the FL material at the FL-TW interface is compressed, released, and

possibly reshocked, it heats up and begins to radiate. Consequently, the

observed radiation intensity rises sharply (Figure 2.2, part A). As the shock

wave travels forward into the TW, the thickness of the SW increases (Figure

2.2, part B); consequently, so doesits contribution to the total observed radia-

tion (note increasewith time in Figure 2.2, part C). If the TW is highly absorb-

ing and/or scattering, or shock-compressedto such a state (as is apparent in

many experiments: Boslough, 1985), the radiation intensity from the interface

will decay with time (Figure 2.2, part C, dash-dot curve labeled fast decay); if

not, the interface source will dominate the observed radiation history (Figure

2.2, part C, continuous curve labeled slow decay) when the FL at the FL-SW

interface is at a higher temperature than the SW. The recorded radiation is the

sum of either the interface slow-decay or fast-decay contribution, and the SW

contribution. Given these possibilities, we must account for the the degree of

geometric (interface roughness) and material (shock-impedance) mismatch at

each interface, especially at the FL-SW interface, in attempting to constrain the

conditions of the FL Hugoniot state from observed radiation.

Even if each interface has little or no roughness, the DP, FL, and TW may

shock-compress to such different temperatures that the resulting temperature

8radients between the layers drive significant relaxation of the FL-SW interface

temperature on the time scale of the experiment. Dynamic phase changes or

other energy sources and/or sinks present in the FL, FL at the interface, and/or

SW on the time scale of the experiment may also introduce time dependence

into the temperature and effective emissivity inferred from the radiation obser-

vations (Grover and Urtiew, 1974). Consequently, we must examine whether or

not the temperature profile of the compressed/released/reshocked target system
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Figure 2.2 Dynamic model geometry. Shock front reaches film/foil layer

(FL)-transparent window (TW) interface (x--0) at time t_ when

radiation is first detected. Interface radiation (i_r) dominates the

early radiation history (A). If 1) the interface temperature decays

slowly, and 2) the FL-TW interface, shocked window and shock

front remain relatively transparent, i_,.r will dominate the observed

radiation history during the experiment ("isw+slow decay" curve).

However, if the FL-TW interface and/or shock front develop

significant reflectivity, and/or the SW develops significant opacity,

in_r will decay quickly (dash-dot curve), and may fall below the

radiation intensity of the SW, is_ on the time scale of the experi-

ment. The total intensity is then represented by the "isw+fast

decay" curve.
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relaxes via conductive and/or radiative transport on the time scale of the exper-

iments, leading to time-dependent (thermal) radiation sources. We must also

account for the effects through the SW, shock-front, unshocked window (USW),

and the TW free surface on the FL-SW interface and SW source radiation of

propagation (Boslough, 1984). We focus on processes at the FL-TW interface as

represented in the observed radiation.

§3. Model Assumptions

We assume all sources contributing to the observed radiation intensity are

thermal and in local thermodynamic equilibrium. We can then relate the source

intensity to the wavelength, k, and absolute temperature, T, through the

2C1

I_(k,W) ____kS(eC,/),T _ 1) [3.1],

where C1---_5.9544X10-17W-m2/sr and C2-----_1.4388X10 -2 m'K are constants.

Comparison of the observed radiation wavelength dependence with that of a

blackbody source, as represented by I_(X,T), implies that materials shock

compressed to high pressures are dominantly thermal radiators (_.J0 GPa:

Lyzenga et al., 1983; Boslough, 1984). At lower pressures, however, most

materials apparently radiate both thermally and nonthermally (SiO2: Kondo

and Ahrens, 1983; Brannon et al., 1984; Schmitt et al., 1986). Several of these

materials are initially dielectrics (e.g., SiO2: Lyzenga et al., 1983). The

processes responsible for this radiation (defect electronic transitions?) are

presently unidentified, but are suggested by spectrometric observations (Kondo

and Ahrens, 1983).

In principle, energy transport in the target occurs by both radiation and

conduction; our task is much more difficult if both radiation and conduction

Planck function, I_(k,T), given by
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contribute equally to this process. In simple terms, we can understand the

likely relative contribution of radiation and conduction to energy transport

within layers and across interfaces via dimensional analysis. The relevant non-

dimensional number is known as the Stark number (Siegel and Howell, 1981),

Ska, referenced to some state R, and given by (Equation [C.18])

Sk.--
a_n_as_W_

This number represents the ratio of conductive to radiative flux, whether across

a layer or within an "infinite" medium. It is composed of the material proper-

ties k._, _ and n R, i.e., the thermal conductivity, radiation absorption coefficient,

and refractive index, respectively. The remaining parameters, which may be

material, include xa, tR, T R and ATR, the governing length scale, time scale, a

reference temperature and temperature range, respectively. Also,

ass _ 5.6696×10-SW/m2.K 4 is the Stefan-Boltzmann constant. For the layered

geometry of the target, we may associate x R with the layer thickness, t_ with the

time scale of the experiment, T a with the shock-compressed or released tempera-

ture of the layer, and AT R with the change in temperature across a given layer

in the target such that ATR/x R reflects the magnitude of the average tempera-

ture gradient across the layer. From this parameter we see that radiative trans-

port dominates conductive transport in 1) an optically-thick (aR---_C_), 2) poorly

conducting (ka--.0) and/or 3) high-temperature medium, all other parameters

being finite. Applying this parameter to the balance of energy in a target con-

sisting of a metallic DP and FL (e.g., Fe), and dielectric TW (e.g., A1203), we

find (Appendix C) that Ska--_10 and "-_10 3 for the TW and DP or FL, respec-

tively. In addition, viewing each layer as an infinite medium implies that con-

duction affects the balance of energy in both the FL and TW over a length scale

of _X/"r_Rt,xp"10 -6 m, where r_ is a characteristic thermal diffusivity and

texp--_10 -7 sec (the experimental time scale). This confines the influence of this
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process on energy transport in the target to the immediate vicinity of the inter-

face. In addition, the radiative component of the energy flux is negligible to the

balance of energy, compared to the conductive flux, in the FL, across the inter-

face, and in the shocked TW, if aR_ 10 7 m -1 (Appendix C). This condition is

almost certainly satisfied for the SW (LiF: Wise and and Chhabildas, 1986;

Al203: Bass et al., 1987, but see Urtiew, 1974), and probably satisfied for the

FL and across the FL-TW interface (Appendix C). Note that this condition is

analogous to that for the validity of the "diffusion approximation" to the classic

radiative transport relation (Siegel and Howell, 1981), where this approximation

becomes reasonable above the bound of _ stated. With these estimates in

mind, we may decouple radiative transport from the energy balance in the tar-

get components and across their interfaces, and treat radiation separately. We

emphasize that this analysis is limited by our ability to estimate the values of

many key properties (e.g., thermal conductivity) of the appropriate high-

pressure states of the DP and TW.

We assume that a given shock-compressed or -released state of any com-

ponent of the target contributing to the observed radiation is one of constant

and uniform density, stress, and material velocity. Consequently, our model is

not directly applicable to the low-pressure regime (_70 GPa), where many

shock-compressed materials deform heterogeneously (Grady, 1980; Kondo and

Ahrens, 1983; Schmitt et al., 1986; Svendsen and Ahrens, 1986). Such behavior

would require us to consider source distributions, spatially averaged effective

emissivities and time-dependent thermomechanical processes, all beyond the

scope of the simple equilibrium thermodynamic framework used here.
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§4.1 Initial conditions: Shock-Compressed State

The model is referenced to the first shock-compressed (Hugoniot) state of

each material in the target. Although this state is reached via a nonequilib-

rium, irreversible process (shock compression), we assume that thermodynamic

equilibrium is achieved in the Hugoniot state itself. This requires the shock-

compressed state to be one of constant, uniform density, material velocity,

stress and energy. In this context, we may connect the initial and shock-

compressed states (i.e., two different equilibrium states) via a classical thermo-

dynamic path (i.e., a path connecting a series of states in equilibrium)

representing a change in specific internal energy equal to that judged by the

general balance of energy across a shock-front.

We assume that the material 1) initially occupies a state with temperature

Ti, and pressure Pi, 2) shock compresses adiabatically and 3) as a fluid. Under

these assumptions, the general balance of energy across the shock front is

represented by the Rankine-Hugoniot relation (e.g., Rice et al., 1958)

1
e(SwPH) = e(si,Pi)+ "_':-__[PH + Pi] [4.1],

Lpi

with

_ 1 - -- [4.2].
PH

In this relation, e(si,Pi ) is the specific internal energy of the initial state with

mass density pi=p(Ti,Pi) and specific entropy si_-s(Ti,Pi) , while e(sH, pH) is the

specific internal energy of the shock-compressed state with mass density

PH _-P(T_Pa) and specific entropy s.--s(T_,PH). The subscripts "i" and "H"

stand for the initial and shock-compressed (Hugoniot) states, respectively. The

initial state is usually standard temperature and pressure (STP), of course, but

the following considerations apply to any initial state. Since [4.1] is valid
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whether or not shock compression induces a phase transformation in the

material, we may also write it in the form

1

e(s_,p_)-- e(_,p_) + _i _[P. + Pi],

appropriate for the change in specific internal energy resulting from a shock-

induced transformation of some phase a, stable at T i and Pi, to some other

phase /_, stable at the pressure and temperature of the shock-compressed state.

The equilibrium thermodynamic path energetically equivalent to [4.1] may be

constructed as follows (McQueen et hi., 1967; Ahrens, et al., 1969). The

difference in specific internal energy between a and/_ at T i and Pi may be writ-

ten

A,e_ -a _- Ae_'a(Ti,Pi) _ e(_,_)- e(s_,p_) [4.3].

Unless otherwise designated, all the following relations in this section apply to a

single phase (/_), so we drop the phase superscripts except when necessary for

clarity. Having connected c_ and /_ energetically at T i and Pi via [4.1], we

compress /_ isentropically from its density at T i and Pi, Pi, to its shock-

compressed density, Pw resulting in a change in its specific internal energy given

by

t" _I_ 1
Aesl(pH) _--- e(si,pH)- e(si,Pi) = J p Psl(p ) dlnp

-p|

[4.4],

where P_(p)= P(si,p) is the pressure as a function of density along the B-

isentrope centered at s i. Note that the the subscript "s" denotes constant

specific entropy. Since this last state and the Hugoniot state are at the same

density, Pw we may connect them by an equilibrium thermodynamic path at at

constant density. With s _-_ s(T,p) and so Tds _ c v dT at constant density,

where c v -- c v (T,p) is the specific heat at constant volume (density), we have
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pTH

e(swpa) ---- e(si,P_ ) + J cv (T,pH)dT [4.51.

In [4.5], Ts_(p_)---- T(si,p_), the temperature of the _state at a density p. along

the _-isentrope centered at si, is given by the solution of

{°l T/01np J s _ _ [4"61'

where _ is the equilibrium thermodynamic Gr_neisen's parameter. Also in [4.5],

T H is the temperature of the /_ state with specific internal energy equal to [4.1].

T¢ n.. _ ,_,,.._._._..,1,., A,_.,,_ {...,. "1_^.._1,1 .... ,-1 D,-....,,.1.*.I_1-,.,.-,.-, I_Q/'_. A_A ....
, _ A,D '_'_'lJ.J.JJI.J.Vl•.t _' 'OLVJLL_ _, V... _. _ .Ik_V_ J.lX_:;A _lAv_. • L, Ob£11_l,l_.l I*DIJ.J.IO_L£, •. O¢-_'_, X_.11'O._51 _.D'*Jll,

1986), we assume _ is a function of density alone, then the relation

Pq "-_{ 0e }p=l [4.7]

yields

e(swPn) = e(si,Pa) + : {P_- Ps_(P_)} [4.8],

and from [4.6], we have

T_ _ T(si,pn ) = T i exp { _%(p)dlnp [4.9].

Combining [4.1], [4.4], and [4.5], we obtain

cv(T,pM) dT ---- -[A _e_-a + Aes,(p_] + 2p--T r_ [PH + Pi] [4.10],

a relation for the equilibrium thermodynamic temperature of a state of/? with

specific internal energy equal to that of its Hugoniot state. We may also
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combine [4.1], [4.4] and [4.8] to obtain

PH

_-_{1 - (1-1-10_)_TH}[PH+Pi] -- [Pfi(PR) + Pi]- PH'_H[A_ -_ + Aeh(pH)] [4.11]

Both [4.10] and [4.11] represent the balance of

p_U_= _Ui

and

PH- Pi = _Ui(v_vi)

[4.12]

[4.13],

by making the constitutive assumption that Ui------u-vi, the speed of propagation

of the shock front with respect to the material velocity of the initial state, vi, is

a function of the change or "jump" in material material velocity across the

shock front, vH-v i. Note that U_u-v H is the speed of propagation with respect

to the shocked material, and u is the speed of displacement (i.e., the "intrinsic"

velocity) of the shock front. For experimental U-v data, of course, Ui----u and

[[v]]--v w i.e., vi--0; also, Pi----0.1 MPa and Ti----298 K. Such data for Fe (Brown

and McQueen, 1986) and many other materials (e.g., Marsh, 1980) are reason-

ably well-fit by a linear relation between U i and (v_-vi) , i.e.,

U i -- a i -k bi(vH-vi) [4.14].

In [4.14], a i and b i are, respectively, the intercept and slope of the U-v relation

(e.g., Jeanloz and Ahrens, 1980).

energy across the shock front, assuming that the shock-compression process con-

nects states in thermodynamic equilibrium. However, since [4.11] further

depends upon the assumption that _/--'_(p), while [4.10] does not, these two rela-

tions are not completely equivalent. We use [4.10] to find T H as a function of PH

or Pw once we have relations for _ A_e_-", Aes_ , c v and Th.

We calculate _.. as a function nf e ith_r v__ the material v_lr)rit, y r_f _hr_rl_-r_ ....................... 1-17 ................

compressed material, phase fl, or P_, from the balance relations for mass and

momentum across the shock front (e.g., Rice et al., 1958; Appendix A),
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centered at _. Eliminating Ui and vH-vi from [4.12]-[4.14],we obtain

_ai2r/n
P,.,- =

(1 -

(McQueen et al., 1967), the so-called shock wave equation-of-state.

rearrange this to obtain r_--rtn(Pa), i.e.,

with

r/n-- -_-i[u -(U 2 - 1)_]

[4.15]

We may

[4.16]

paai2

U _- 1 + 2bi(P__pi ) [4.17].

The value of either [4.15] or [4.16] is limited by the validity of the linear U-v

relation, [4.14], and the fact that as b,n - l (Prieto and Renero,

1970; Appendix A). As stated, the U-v relation, [4.14], is referenced to p_, the

initial density of the low-pressure phase, a.

The change in specific internal energy along the isentrope of/3 referenced to

(Ti_i) upon shock-compression, Ae_(pR), is generally calculated from some

"equation-of-state" (e.g., spatial finite strain: Stacey et al., 1981), P(si,p) , for/3

referenced to (Ti,Pi). However, for shock-compressed materials, the energy bal-

ance, [4.11], already contains such an equation-of-state, as we now show. Recall

that, to obtain [4.11], we shock-compressed the material from a density p_ to ph,

incurring a phase transformation in the process. Imagine now that we can

shock-compress the /3-phase of the material from its "initial" density,

pi--pt_(Ti,Pi), to Pn- The energy balance for this "metastable" shock-compression

locus is given by [4.11] if we replace _ with Pi and set A _e_-_=0, i.e.,

PH {1 1 1 ,-- - ( +'_''/-)r/H}[Pn+Pi] -- [Ps_(P.) + Pi] - PH"/nAes_(Pn) [4.18],
Pi

with r_ _- 1-Pi/p w Noting that
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_ __e

[4.18] may be written

dAe_

PHI dp H ] -'YnAe,(Pa) - {1 _ (1+ 21__,7_)r/_}[VH+Vi] _ Vi
PH

which is an ordinary differential equation for Ae_(pH ).

cally, subject to the initial (PH'-Pi) conditions 1) A%(pi)=0 , and 2)

dAe_

[4.19],

[4.20],

states, i.e.,

Ui* = at* + b_(v_-v_*) [4.23],

which is referenced to Pi. Then we use [4.14]-[4.16], which provide PH as a func-

tion of Pn (or vice-versa), p_, a i and bi, for ]3, to write _" and b_ as functions of

_, ai, b i and Pi- Doing this in Appendix A, we obtain

If we put these initial conditions into [4.20], we find that PH(Pi) should be equal

to Pi; however, for Px(PM) as given by [4.15], we have, with etai__l-p_/pi,

P_ai2r/i

Pn(Pi) = Pi + [4.22],
(1 - bini) 2

which is not equal to Pi unless Pi-'-_; usually, however, pi>p._. As stated above,

[4.14]-[4.16] do represent the PH--P_ states of the high-pressure phase, /_, but in

terms of the density of the low-pressure (initial) phase, _, and a i and bi, which

are referenced to _ and the initial state, (Ti,Pi). So, instead of [4.15], what we

need is a relation for PH referenced to Pi, rather than _, such that PH(pi)=Pi. To

obtain this relation, which is equivalent to the "metastable" Hugoniot of

McQueen et al. (1967), we first define a metastable U-v relation for/_ Hugoniot

[4.21].

We solve this numeri-
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{ p_ (l+bir/i) }1/2ai* ----- ai*(Pi) = (1-r/i) (l_birli)a a i [4.24]

and

, 1 { [4(1-rli)bi + (2-r/i)bi2_i- 11} [4.251b_ -_ bi(Pi ) -- _- 1 + (l_bir/i)(1+bit/i)

([A.55] and [A.56], respectively). Note that, from these relations, a_*--+a i and

b_--+b i as pw-+_, i.e., as r&--.+O. With al* and b_ so constrained, we have, analo-

gous to [4.15], the relation

pi(al*)2_7_
P-_= -ei*+ ra,,_1

(1 - gr_) 2 t .... ,,

where we have set P_*=P.(p_), as given by [4.23]. Relation [4.26] is the form of

P. needed to solve [4.20] for Ae_(p.). Once we have Aes_(pa) via solution of

[4.20], [4.18] provides the equation-of-state, i.e.,

P_(Pu) -- Pu"IuAe_(P_ + Pu{ 1 - (l+l'/u)rl_}[Pu+Pi]- Pi [4-271-
Pi

With _ known a priori, and a i and b i constrained from experimental U-v data,

then, we need only _ to obtain _* and b_ from this method. As discussed in

Appendix A, if we know this density sufficiently well, then we also gain esti-

mates of K_ and K_, the isentropic bulk modulus and its first pressure deriva-

tive, referenced to the initial state (Ti,Pi) , since

= [4.28t

when we assume that a4* is equal to the bulk elastic wave velocity, and

K_ -- 4b_'-I [4.291

(Ruoff, 1967), assuming only that /3 shock-compresses as an elastic (or barotro-

pic) fluid (see the Introduction to this thesis).
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In Figure 4.1a, we compare Aest[pH(PH) ] for e-Fe as given by [4.201, based on

[4.26], with Ae_ for e-Fe as given by 1) third-order spatial finite strain (Stacey

et al., 1981), 2) the third-order Ullman-Pan'kov equation-of-state (Ullman and

Pan'kov, 1976), and 3) Murnaghan's equation-of-state (e.g., Stacey et al., 1981),

all three of which have the form Ae_----ZX%(Pi,I_,K_,PH ). The parameters used

for this calculation are given in Table 4.1. For compatibility and a fair com-

parison, of course, we constrain I_ and K_ by [4.28] and [4.29], respectively. As

noted by Somerville and Ahrens (1980), the third-order Ullman-Pan'kov relation

is compatible with the linear U-v relation, [4.14], since both make similar pred-

ictions for higher-order derivatives of K_. (see Appendix A). The calculations

presented in Figure 4.1a demonstrate that the value of Aeq(pH ) predicted by

each of these methods is essentially the same. Note that the Murnaghan isen-

trope is off-scale in Figure 4.1a. For the derivatives of Ae_(pH), of course, the

minor differences between the difference expressions for Aesl(pH) are magnified, as

shown in Figure 4.1b, where we plot Pst[p.(PH) ] as given by [4.27], and compare it

with the values for Pq[pH(PH)] given by the equivalent finite strain and Mur-

naghan relations. In particular, note that the energy balance equation-of-state,

[4.27], is a bit "stiffer" than either of the finite strain equations-of-state.

Energetically speaking, the difference between [4.11] and [4.181 is A_e_ _.

So, if we subtract [4.18] from [4.11] and let pH'-'_pi, we obtain an estimate of

A_, i.e.,

1 } [Pi'q-Pi] [4.30].Pi

From a purely equilibrium thermodynamic viewpoint, A_e_-_ is given by

A_e_-a _'_ Ag_-_(Ti,Pi) + TiAs_-a(Ti,Pi) q- Pi AP_-a(Ti'Pi) [4.31]

where Ag_-a As_-a and Ap_-a are the difference in specific free enthalpy, specific
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Figure 4.1a. Comparison of different estimates for the change in specific inter-

nal energy (SIE) along the isentrope anchored to (Ti,Pi) , Aes_ , of
e-Fe as a function of pressure and based on the parameters for e-

Fe given in Table 4.1.



- 41-

2 I 1 I

"X x

' II

I

7 I I I

0

OD

(_I/fltI) _[Ig °t.d°x_,uasI

0

Ok2

D_
r_

o

0



- 42-

Figure 4.lb. Comparison of different estimates for pressure along the isen-

trope, P_, of e-Fe referenced to T i and Pi, based on the parame-
ters for e-Fe given in Table 4.1.
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Table 4.1. Standard Temperature-Pressure (STP) Parameters.

Symbol e-Fe liquid-Fe Al20_ LiF

p 8352 a 7952 b 3986 ¢ 2650 d

a 4487 e 4038 e 89081 5050 d

b 1.57 e 1.58 e 0.91 f 1.32 d

168_ 130 ! 254 h 68 _5.28; 5.31; 4.32 h 4.28 i

% 445 i 775 c 1615 d

a 4.3 k 1.6 t 10.3 !

"7 1.g5 m 1.32" 1.78 m

q 1.0 n 1.0 n 1.0"

e D 000 ° 1 _OU'- O(_U-

T M 1809 c 2345 ¢ 845 °

k 80 p 46 p 3 P

p, 50 q 0 0

Units

kg/m 3

m/see

GPa

J/kg'K

)< 10-SK -1

y2"

1%.

K

W/m.K
n_'_ "m

a Jephcoat et al. (1986).

b Calculated from p(T) -----8136.(1 -7.608X10-ST): Drotning (1981).

c Robie et al. (1978).

d Van Thiel (1977).

e Estimated from U----3955+l.58v (Brown and McQueen, 1986).

! Fit to data in Marsh (1980).

g Calculated assuming K s ---- pa 2.

A Anderson et al. (1968).

i Calculated with K_ -- 4b-1 (Ruoff, 1967).

/Andrews (1973).

k Assumed the same as c_-Fe (Touloukian et al., 1975).

/ Touloukian et al. (1975).

,a Calculated from ff -- c_Ks/pc r

"_(p) = _(pi)[8/p] q assumed in all calculations.

o Weast (197g), p. D-187.

P assumed the same as a-Fe in Touloukian et al. (1970).

q Inferred from Keeler (1971).
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entropy and mass density, respectively, between a and fl at T i and Pi- For the

particular case of melting, we assume

A_e_-_ _ Ah_- Acp(T M- Ti) + Pi AP_-_(Ti'Pi) [4.32],

where Ah M is the enthalpy of melting, and ACp is the effective jump of the

specific heat at constant pressure across the liquid-solid transition at the melting

temperature, T_ and standard pressure, Pi.

Since both dielectric and metallic solids initially compose our target, we

must consider thermodynamic properties that reflect the influence of both ionic

---..,,Z ^1^_-_--'.^ ,"r__ __4i..e___.L_ ._I.L_ 1- ...... • ,_A,L_ ..... JL "1 A" - * A1

_LU_t _J_t_At._Ltit_ I._IU_D_;_. AU _bllll_tbt_ bll_ U;CI,I'UlUUIC l_tbblC{2 COIlbrlDtlblOIl bO bIlCS_

properties, we use the Debye model (e.g., Alt'shuler et al. 1962; Andrews, 1973).

In particular, Andrews (1973) used this model as part of a parameterization of

the equilibrium thermodynamic properties of a- and e-Fe. Jamieson et al.

(1978), Brown and Mcqueen (1982, 1986), and Boness et al. (1986), have all

assessed the influence of electronic processes on the material properties of metals

at high pressure and temperature. They assume the conduction electrons con-

tribute to the equilibrium thermodynamic properties of a metal as a Sommerfeld

free-electron gas (e.g., Wallace, 1972, Sect. 24). This is reasonable for T< <TF,

where Tz is the Fermi temperature. Since the value of T F for Fe is --_105 K,

assuming TH<<T p is quite reasonable for the calculations presented below. So,

assuming that lattice-electron and band-structure contributions are negligible,

the molar Helmholtz free energy (HFE), F(T,p), of a cubic or isotropic Debye

solid material, subject to an isotropic state of stress, is given by (Wallace, 1972,

Sect. 5)

{3 1 } 1 _2(p)T 2 [4.33].F(T,p) = ¢(p) + 3vR _ _D + ln[1 - e-@] - -_ F__(_D) T - _-

In [4.33], ¢(p) represents the zero-temperature lattice contribution to the molar
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HFE,

eD(p)
[4.34],

then 0 D is given by

related to a lattice

Pi} _

eD(p)_._OD(Pi)exp{"lD(Pi) IT, 1 _ { __.. } _}}Pi

If we assume

In this approximation, the Debye temperature O D is

Gruneisen's parameter, %, by (Wallace, 1972)

%---- /
dlnO D

dlnp }

tion (e.g., Gopal, 1966), i.e.,

-- - f0 x3.m dx

[e'- 1]

-_F(p)T 2 is the low-temperature (T<<Tv) electronic contribution

A2(p)T 2 is the high-temperature anharmonic contribution to F, v is the number

of atoms in the chemical formula, and F__(_) is the Debye internal-energy func-

[4.36].

[4.37].

[4.38],

[4.39].

For simplicity, we do not separate % into longitudinal and transverse com-

ponents; in this case, 9b represents a weighted average of these components.

The quantity F(p) is related to the electronic Gruneisen's parameter, fie, through

(e.g., Wallace, 1972)

is the Debye similarity parameter,

n(p) -- r(p)- 2A2(p)

T

[4.35],

to F,
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_e _--

Assuming _e is constant, we have

dlnFd'_"np } [4"401"

%
Pi

[4.41].

Noting that the high-temperature (T>OD) anharmonic contribution to the free

energy, A2(p)T 2, has the same temperature dependence as the electronic contri-

bution to F, we observe that these will have equivalent effects on F.

with [4.41], we assume, for simplicity, that

£d

Pi

By analogy

[4.42].

For the example calculations involving Fe-targets presented below, we constrain

the values of 12(pi) and w empirically. Boness et al. (1986) calculated F(p) for

the e and _phases of iron using the Sommerfeld free-electron-gas theory. In

addition, these authors suggest that the electronic density-of-states in liquid

iron at high pressure may be approximated by that of the closed-packed e and

_phases at high pressure, where the liquid should be "close-packed." We make

the same assumption.

Relation [4.33] allows us to write expressions for the approximate density-

and temperature-dependence of a number of solid-state properties (Appendix A).

In particular, the equilibrium thermodynamic Grlineisen's parameter, % based

on [4.33], is given by

%+ fl
= - %)_-_c v W [4.43]

(Equation [A.11]). From this, we note that "7 is only weakly temperature-

dependent, since w_% in the pressure range of interest. Hence, the thermo-

dynamic model based on [4.33]is approximately consistent with the assumption
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above that "7 is a function of density alone, upon which [4.8] above is based.

Consequently, we assume _/_%(p), where %(p) is given by [4.38], the power-law

form (Bassett et al., 1966). In this case, from [4.6] and [4.38], we also have

-
J JJ

for the change in temperature in the material due to isentropic compression or

expansion from a starting density Pl to a second density P2 along the isentrope

of the material centered at s i.

With respect to TR, we are particularly interested in the specific heat at

constant volume, c v (T,p), given by

{ 02f } ._ 3uR {4ED(_D) 3_D } f_(P) T [4.45]cv(T,p )-_-T -_ p _ [e_--11 + M '

where M is the molecular weight. Substituting this into [4.10], we obtain

1

with f_f_(PH) and

1

Aev(PR) =-[A _e_"a+ Ae_(PH)] + _-_p_ r/H[PH+ Pi] [4.471,

being the difference in specific internal energy between the Hugoniot and princi-

pal isentrope of /_ at density Pvr Note that Aev=0 when TH=Tst , TH<Tsl when

Aev<0, and TH> T_ when Aev>0. In [4.46]-[4.47], we use

_c,_-em/T_, _m_em/T, and Om_eD(p_). Equation [4.46] is an implicit relation

for T w which we evaluate numerically. Since the majority of our calculations

are at high temperature (T>OD) , and the Hugoniot temperature changes much

more drastically with pressure than OD, we may expand F__(_) into its high-

temperature (_m--_0) form:
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f0 x{ 1 }F___(_m__+0)_._ ff 2 l---x+ 1 x2+ "'" dx
(_)3 2 12

3 1 2
-- i - _-_m + _-,_ -'I- 0[,_] .

Substituting this into [4.46], we obtain

1 3_,R

_-a. W_+ -_
3vR O 2

TH_- A_TH+ Tb-_ ..=0 [4.48]

with Au-_-A(p_) and

A(PH) _ Aev(PH) + -_-_-F__(5_.)T_ + 8M m + [4.49].

Relation [4.48] has the solution

:.. [4.50]

with

p_---4 va + __H A_

and

vR
q_--- 2M 8{ vR 2

ff we set 12 equal to zero in [4.46], we have

M A ev(PR )
ED(_r_H)TH(12---0 ) = Ev(_)Wsl + [4.51].

which is appropriate for a dielectric material with negligible anharmonic contri-

butions to F. Doing this in in [4.50], we obtain

TH(12___0 ) __ M A, _ 1
6pR H {i+ { 1 ._.{ [3vRO,:,,]MA,_} } }2 1/2 [4.52]
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with

, ._ 9vRA. -- A_p.) + E_(_)T_ + -_-O_,,

for a dielectric material at high (T>OD) temperature with A2Ts]<A2T_<<I.

Alternatively, if we assume the classic limit for the harmonic contribution to cv

at high temperature, i.e. 3uR/M, [4.46] reduces to

with

A.2 /
TH( m--0)= {{1+9 (vR)2 H, -1} [4.53]

Finally, if we set both [2 and _m equal to zero in [4.46], we have

M

TH(f_=0,¢m=0 ) = F_(¢D,)T_ + 3"-'_ Aev(PN) [4"541"

If we further assume F__(_D,)_I in [4.54], we obtain the relation most commonly

used (e.g., Jeanloz and Ahrens, 1980) to calculate Tw

To demonstrate the effect of these different approximations to c v on T w we

plot T. as a function of pressure for Fe shock-compressed from a-Fe to e-Fe in

Figure 4.2, using the parameter set for Fe given in Table 4.1. Below, we con-

strain f/ from the intersection of Fe-Hugoniot and melting curve, but for this

comparison we assume A 2 _ 0 and use the results of Boness et al. (1986) for

F(p) (Table 4.1). On the basis of these results, we may conclude that the elec-

tronic contribution to c v of e-Fe dominates its temperature along the Hugoniot

of Fe at high pressure. Also for e-Fe, and perhaps not suprisingly, the

difference between T H calculated with the full Debye relation for c v ([4.46]) and

that calculated by assuming the harmonic part of c v -- 3vR/M ([4.52]) is very

small (about 200 K at 240 GPa). In fact, even for A1203, which possesses a

A_ _-_ Aev(pa ) + F__(_D,)T _ + _2Mf_T 2_ .
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Figure 4.2. Comparison of the effect of different models for the specific heat at

constant volume, cv(T,p), on the temperature of the e-Fe

Hugoniot states.
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a much higher Debye temperature than e-Fe (Table 4.1), Hugoniot tempera-

tures calculated with [4.52] are only about 300 K above those calculated with

[4.54] at 200 GPa. Note that the curves in Figure 4.2 converge at low pressure

because T a approaches Tst "faster" than the various approximations to cv can

affect T H as P-+0.

From the impedance match and U-v relations of each material, we may

obtain the pressure and density of the first shocked-state of each target com-

ponent. Using this along with an estimate of deiba and the assumed form for -_

above allows us to estimate, using [4.20] and [4.44], the changes in specific inter-

n_l _ner_v n nd t_mp_rn.tur_ _lnng t,h_ n nnrnnrint_ ]_ntrnn_ nf the h]_h-nr_llr_
_1_, .................. JL'- Jr" --JL" ............ JU ......... _" JU .......

phase of each target component. These estimates, along with the model for

c v (T,p), allow us to calculate T H for any phase as a function of Prr The next

step is to estimate the effect of release on the shock-compressed state (TH, PH and

§4.2. Initial Conditions: Release and Reshock States

As discussed above, the targets are constructed so that the DP has a higher

shock impedance, _U, than the FL, which in turn has a higher impedance than

the TW. In this case, both the DP and FL are shock-compressed, released and

possibly reshocked. Assuming that a given release state of the DP or FL is in

thermodynamic equilibrium, we may again employ the concept of an equivalent

equilibrium thermodynamic path to connect respective compressed and released

states of each target component. However, since we have no expression for the

change in specific internal energy of the material during release that is indepen-

dent of the details of phase transition (note that [4.1] is such a relation for

shock compression), we cannot utilize the same kind of equilibrium thermo-

dynamic path as that constructed above for shock compression. Instead, we

must assume something about the release process, and any potential phase
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change during release,to construct an equilibrium thermodynamic path between

the compressed and released states. The only constraint we have a priori is

that the release process takes the shock-compressed material at an interface, via

the release path, to a state with approximately the same normal components of

material velocity and stress as the shock-compressed state of the lower shock-

impedance material on the other side of the interface. Subsequent wave-

reverberations establish the continuity of normal stress and material velocity, as

required for the existence of a material interface.

To proceed further, we assume that heat transport in or out of the target is

insignificant on the time scale of the release process; i.e., this process is adia-

batic (6q=0). Considering each compressed target component as an equilibrium

thermodynamic system, we further assume that any mechanical work by the

system during release is entirely reversible. In the case of a single-phase system,

the release path is then both isentropic and adiabatic. The change in tempera-

ture with density along this path is related to "_, as given by [4.6] above. Since

the impedance match provides us with the pressure of the release state, PR, we

may calculate the temperature, TR, and density, PR, along an isentropic path

that has not crossed a phase boundary through simultaneous solution of [4.6]

and

p(TR,Pa) -----p(T_,PR) exp - c_[T,p(T,P_)]dT [4.55],

where T R _-_ T(swpa) is the temperature, PR _ P(TR,Pa) the density of the release

state, and p(Tm,Pa) is the density along the Hugoniot of the same phase at a

temperature T m and the pressure of the release state, Pa- The coefficient of

thermal expansion, a(T,p), in [4.56] comes from an equilibrium thermodynamic

model for the appropriate phase (Appendix A for solid-state; Svendsen et al.,
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1987, Chapter V, for liquid-state). For example, in the case of solid-state

release, a follows from the equilibrium thermodynamic model for F(T,p), /. e,

P 0T0p p,T 0"/% [4.56]

[--_p-p iT + { 02F t Kr
0P 2 J W

(Appendix A), where K r = I_T,p)is the isothermal bulk modulus, and it is

referenced to the isentrope or Hugoniot as discussed in Appendix A.

To bound the nature of the release process as initiated at an interface, we

focus on the extremes: 1) ..... ' .......... _ _ -_--'-" ..... _'-' ..... _ " "_-complete con_ac_ [...% unoc_-lrou_ _mcr, u_) _ _ne

interface, or 2) no contact, in which case each material has a free surface at the

interface. We refer to the former interface as the "smooth" interface, and to

the latter as the "rough" interface. To illustrate the different paths these

"end-member" interfaces should take, consider the two examples discussed

below and depicted in Figure 4.3. If we shock-compress the DP(FL) to some

point A along its Hugoniot below the Hugoniot-melting curve intersection, it

will release to a state having, after one or two wave reverberations, the normal

stress and material velocity of the shock-compressed FL(TW). If these rever-

berations are isentropic, the resulting temperature will equal that calculated by

direct release to the pressure of the shock-compressed FL(TW). The DP(FL)

material at the smooth interface then releases directly to this state, represented

by point B in the Figure 4.3. However, the surface of the DP(FL) at the rough

interface is partially free; hence, the DP(FL) material at this interface releases

to near-zero pressure. If we assume the release path is isentropic, its slope will

be less steep than that of the melting curve. In this case, the melting curve and

release path will intersect (see point C, Figure 4.3). If the phase transition is

slow relative to the rate of decompression, the DP(FL) material will follow the

ABCG (metastable) path to low pressure (even though this path is not
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Figure 4.3. Possible range of T-P paths taken by DP and FL materials near

the DP-FL and FL-TW interfaces, respectively, during an experi-
ment.
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necessarily isentropic, as discussed below). However, if the transition is uninhi-

bited, the release path will turn along the phase boundary at the intersection

point (point C, Figure 4.3), and the mixed-phase material will decompress along

the boundary until the transition is complete, or the mixture reaches low pres-

sure. Assuming the transition completes above zero pressure at point D in Fig-

ure 4.3, the now liquid DP(FL) leaves the phase boundary and continues to

decompress along DE to zero pressure. As the DP(FL) material closes the inter-

face, it impacts the FL(TW) material and is reshocked and reverberated along a

series of paths, collectively symbolized in Figure 4.3 as the paths lying between

EF and GH, up to the smooth-interface, release-state pressure, which is that of

the shocked FL(TW). Note that the temperature achieved by this set of shock

paths is bounded above by the temperature estimated from a single shock

compression back up to the Hugoniot pressure of the DP(FL); we use this bound

below, along with isentropic release, since it follows directly from the results of

the last section. Because the initial state of the reshocked material is at a

higher temperature than the unshocked material, the reshocked material attains

a higher temperature (ATRs higher in Figure 4.3) than the release state of the

DP(FL) material at a smooth interface. If the unshocked DP(FL) material is

shocked to a higher pressure state than A that is still below the melting curve, a

smooth interface may release to a state pinned to the melting curve, or be

above the melting curve, as for release from A' in Figure 4.3, in the liquid

state. The rough interface released from A' would follow A ' B' C' and be

reshocked along C' D' to D' . Note that the effect of reshock is much more

pronounced as the initial shocked-state pressure increases, regardless of the

phase transition.

When the release path encounters a phase boundary, such as the melting

boundary shown in Figure 4.4, [4.6] is no longer valid. If we believe the release

path remains isentropic through this region, then we must require that, in
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addition to releasing adiabatically and doing or experiencing only reversible

work, the material also change phasein thermodynamic equilibrium (Appendix

B). Under these conditions, the isentropic two-phase path for a congruent

phase-transition from phase B to phase 7r is described by the relation

{(c_ + xA%)Av - (aZv B + X,'X(ow ))Tm(P)As} dP

+ As TIn(P) As dx = 0 [4.57],

where P is the pressure along the phase boundary, TIn(P), X is the mass fraction

of _r, % is the specific heat at constant pressure, a is the coefficient of thermal

expansion, v is the specific volume, and

is the jump of any quantity _ across the phase transition. Since 1) all end-

member quantities in [4.57] may be viewed as functions of pressure and tem-

perature, and 2) temperature and pressure are not independent along the

equilibrium phase boundary, these quantities are actually function only of pres-

sure or temperature along the boundary. In this case, choosing P as indepen-

dent, we may solve [4.57] for X = x(P) (Appendix B) to obtain

with

1 _ P #(P*)[ Tm(P)a#v#As - c_Av ]dP*
x(P) -- As#(P)Av _m

P 1 Av ]_u(P) n exp S _ {A(c_v) T_'_)11-1- -_--_-}}dP

[4.58]

In

phase boundary, i.e., where X _ 0.

[4.59].

[4.58], P_ is the pressure at which the release path of _ intersects the 7r-_

We may evaluate [4.58] numerically along
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the phase boundary, Tps(P), with x(P)increasing above zero, until 1) X _-- 1

(complete transformation) or 2) TpB = T_(PR) (partial transformation). In the

former case, the new phase then releases to P, along a path beginning at the

pressure and temperature on the phase boundary where X --_ 1.

Relation [4.58] is valid along any isentropic path through a first-order

mixed-phase region of a single-component system, (i.e., solid-solid, liquid-solid),

but now we focus on the solid-liquid phase boundary as discussed above. To

utilize [4.58], we need to estimate solid- and liquid-state properties along the

solid-liquid boundary TM(P ). We do this by way of semi-empirical models for

the solid-state (e.g., Andrews, 1973; Appendix A), _nd the !iqu]d-state (e,g,,

Stevenson, 1980; Svendsen et aL, 1987, Chapter V), respectively. For the solid

state, we use a parameterization of the solidus, TMS(pd), based on Lindemann's

law:

dTJ } TdXd-- - [4.8ol,
dp_ Lindemann P_

[4.62],

where

1 [4.61]xd --

for the solid-two phase boundary (solidus). The quantity -y_ is the solid phonon

Gr_ineisen's parameter at the melting point, equal to %(Pal) in the Debye

approximation we use here. Using [4.{}1] in [4.60], we may calculate Td(p_) once

we know the density of the solid along the phase boundary, and the dependence

of kd on the solidus density. For the solid phase, we have already assumed

_p ---_ %(p), with % given by the power-law [4.38] above. Putting [4.38] into

[4.61] and the resulting combination into [4.60], we obtain an expression for the

solidus, i.e.,
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where p_ ---- p(T_,Pi) is the density of the solid at the melting temperature at

standard pressure. To use [4.62] to find T_(p_), we need to calculate the change

in density along the solidus with pressure. Noting that, in general, the equilib-

rium thermodynamic properties as developed from [4.33] are functions of tem-

perature and density, we may calculate the variation of any of these properties,

¢(T,p), with temperature at constant pressure from the relation

where

where Pr and Tr

¢(T,P_) = ¢(Z,P_) + __WI 0¢1 dT [4.63],e

0¢ P p "-_-P } T [4"641

are some pressure and temperature at which we know ¢. In

particular, putting ¢=--p into [4.62], as we did to obtain [4.55] above, we may

anchor the solidus T_ to the solid Hugoniot of the relevant solid phase by solv-

ing [4.63] (numerically) simultaneously with

/ /p(T_,P) ---- p(T_,P)exp - _rH c_[T,p(T,P)]dT
[4.65],

where p_ ----p(T_,P) and p(TwP) is the Hugoniot density of the solid phase at

the same pressure, with c_ as given above. In Figure 4.4, we compare this calcu-

lation with one in which we assume p(T_,P)_--p(T_,P). The greatest effect is at

low pressure; this is also where the correction is most uncertain.

For the DP-FL and FL-TW interfaces with no contact, the DP and FL

release to near-zero pressure, and consequently we cannot use the Hugoniot as a

reference state. So instead of [4.55], we solve [4.6] simultaneously with

p(TR,0 ) ---- p(T,,0)[1 - a(Tr,0)(T R - T,)I [4.66],
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Figure 4.4. Comparison of e-Fe Lindemann solidi calculated from the

compression along Hugoniot (dotted curve) with that estimated

from the compression along the Hugoniot adjusted to the solidus

temperature (dashed curve), as discussed in the text.
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where T r is some reference temperature (e.g., 298 K or TM), depending on the

relevant phase. With the density of the release state, PR, we may estimate the

free surface velocity of the DP and FL surfaces at the DP-FL and FL-TW inter-

faces, respectively, due to isentropic release, via the Riemann integral method

(e.g., Fowler and Williams, 1970). We assume, as required by the constraint of

isentropic release, that the material velocity is continuous across the phase

boundary (i.e., the same for both phases) when calculating the free surface

velocity. We then take this free surface velocity as the "projectile" velocity of

the DP or FL surface impacting the FL or TW surface, respectively, and use an

impedance match to calculate the pressure and density of the reshocked state.

To calculate the temperature of the reshock state, we use the appropriate form

of [4.46], but referenced to the temperature and density of the complete release

state rather than to T i and p_ (Appendix B).

§4.3. Initial Conditions: Application to Fe Targets

To exemplify these considerations, we calculate release and reshock states

for Fe-Fe-A120 3 and Fe-Fe-LiF targets, as shown in Figures 4.5a-b. The solid

and liquid Hugoniot states result from [4.46] and [4.52] (with A2=0 and _D._---0),

respectively, as based on the parameter set given in Table 4.1. Solid-state pro-

perties along the release path and melting curve are referenced to the c-

Hugoniot via [4.6], [4.46] and [4.52], while the analogous liquid-state properties

are referenced to the experimentally constrained Fe melting curve of Williams

and Jeanloz (1988) via a liquid-state model for Fe (Svendsen et al., 1987,

Chapter V). The Fe melting-curve data of Williams and Jeanloz (1986), which

extend to 100 GPa, are fit to a Lindemann parameterization, referenced to the

e-Fe Hugoniot (metastably above 245 GPa) using [4.62] and [4.65] (Svendsen et

al., 1987, Chapter V), and then extrapolated to 330 GPa. In calculating these

release paths, we ignore all other solid phases of Fe, save e-Fe, which is the
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Figure 4.5a. Release/reshock calculations for Fe film/foil-Al20 3 interfaces and

initial greybody temperatures inferred from Fe-Fe film/foil-A1203

radiation data of Bass et al. (1987). "Release conduction" and

"reshock-conduction" symbols represent initial effect of thermal

inertia mismatch across the Fe film/foil-A1203 interface on the
indicated states.
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Figure 4.5b. Release/reshock calculations for Fe film/foil-LiF interfaces and

initial greybody temperatures from Fe-Fe film/foil-LiF radiation

data. The larger shock-impedance mismatch between Fe and

LiF results in a lower release-state pressure at Fe-LiF interfaces

than at Fe-AI20 3 interfaces, when both release from the same

Hugoniot pressure.
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stable solid phase of Fe along its Hugoniot between 13 (Barker and Hollenback,

1974) and -_ 200 GPa, where the sound-speed measurements of Brown and

McQueen (1982, 1986) along the Fe Hugoniot suggest that e-Fe transforms to

ff-Fe (?) or possibly a new solid phase (0: Boehler, 1986). Consequently, "?-Fe

and/or another solid-phase is in equilibrium with liquid-Fe above about 5 GPa

to perhaps 280 GPa (e.g., Anderson, 1986). In this case, we neglect any effects

of an e---_'_ or e---_0 transition in referencing compression along the Fe-melting

curve to the e-Fe Hugoniot. As stated above, in calculating the e-Fe Hugoniot

states shown in Figures 4.5a-b, we have constrained ft(#i) , with w -- 1.34, which

is the value of % for e-Fe given by Boness et al. (1986), by requiring the

parameterized Fe-melting curve and e-Hugoniot to intersect at 245 GPa. On

the basis of the parameter set given in Table 4.1, this fit constrains f2(pi) to be

0.046 J/kg'K 2. Boness et al. (1986) calculated a value of 0.090 J/kg.K 2 for F(pi)

(adjusted to STP density for e-Fe given in Table 4.1). If we set f2(pi) = 0.090,

the e-Hugoniot based on the parameter set in Table 4.1 intersects the melting

curve at _ 280 GPa. We note that Boness et aI. (1986) constrained F(pi)=0.09

J/kg'K 2 and %-_-1.27 for ff-Fe, while Bukowinski (1977) constrained F(pi)=0.08

and J/kg'K 2 and %=1.5 for this phase. With these values for F(pi) , the value

of ft(pi) constrained above for e-Fe implies some competition between anhar-

monic and electronic contributions to the specific heat of e-Fe at high pressure.

Brown and McQueen (1986) fit a linear U-v relation to the available Fe-

Hugoniot data between 13 and 400 GPa. Since their sound-speed measurements

also suggest that Fe melts along the Hugoniot above about 245 GPa, their U-v

relation should describe the liquid-solid mixture and pure liquid phase, as well

as the solid. On this basis, we use their U-v relation to calculate both the e-Fe

Hugoniot and a metastable liquid-Fe Hugoniot referenced to the extrapolated

density of liquid-Fe at STP (Table 4.1). With this U-v relation, [4.53] above for

T. (A2= 0 and 0) and r constrained by Boness et at (1980), we
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calculate the metastable Hugoniot of liquid Fe. Using /X_e_-_ = 0.14 MJ/kg for

Fe (as compared to the enthalpy of melting at standard pressure, 0.25 MJ/kg,

from Desai, 1986), the metastable liquid Fe Hugoniot intersects the melting

curve at about 305 GPa. This agrees reasonably well with the results of of

Young and Grover (1984), who also ignored all other phases of Fe, save e and

liquid, in their parameterization of the Fe melting curve. We combine this

metastable Hugoniot along with the e-Fe Hugoniot in an ideal mix (e.g., Watt

and Ahrens, 1984) to construct the shock-compressed, mixed-phase region shown

in Figures 4.5a-b.

For comparison with the calculations, we have plotted the initial interface

temperature results from the Fe film/foil experiments of Bass et al. (1987) in

Figures 4.5a-b. Note that the Fe-A120 3 interface data shown in Figure 4.5a run

almost parallel to the reshock locus, thereby exemplifying the strong pressure

dependence of the reshock process (Urtiew and Grover, 1974). Comparing the

data with the smooth-interface release states, shown as squares in Figure 4.5a,

implies that Fe at both film-A120 3 and foil-A120 3 interfaces experiences up to _-_

2500 K of reshock heating between 190 and 230 GPa. As stated above, we

naively expected that the film-TW interface would experience consistently less

reshocking than the foil-TW interface. The present results contradict this

expectation. There appears to be no guarantee that film interfaces will con-

sistently experience any less reshock than the foil interfaces, especially at high

pressure. In this case, a well-polished foil surface may actually experience less

reshock than a slightly porous film interface.

Figure 4.5b displays the results of the calculation for Fe-LiF interfaces.

Because of the larger impedance mismatch between Fe and LiF, the Fe-LiF

interface reaches a lower release-state pressure than the Fe-AI20 3 interface when

both release from the same Hugoniot pressure. The data and calculation imply

that lower release-state pressure results in less extreme reshocking. Note that
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the Fe-LiF and low-pressure Fe-Al20 3 data fall right on the corresponding

smooth-release locus. The points labeled "release conduction" and "reshock

conduction" refer to the effect of the contrast or mismatch in "thermal inertia"

across the Fe-TW interface on the releaseand reshock temperatures, and as dis-

cussedin the following section.

§5. Conductive Transport in the Target

We assume that the temperature profile created by shock compression,

release and/or reshock is established on a time scale short enough to represent

the initial conditions for energy transport in the target. Urtiew and (]rover

(1974) considered the problem of energy transfer at material interfaces and

demonstrated that a rough (__.,1 pro) interface experiences a higher degree of

shock heating than a smooth (_1 _m) interface, much like a porous material

experiences relative to its crystalline counterpart. Since the TW surface at the

interface is much less rough (_10 -s m) than the DP surface at the interface, it

should experience little, if any, direct reshock heating. However, the DP and

FL surfaces at the DP-FL interface, as well as the FL surface at the FL-TW

interface, may experience significant reshock heating, as discussed above.

Following Grover and Urtiew (1974), we assume that 1) energy transport is

parallel to the direction of shock propagation (i.e., one-dimensional), 2) both

temperature and heat flux are continuous across each interface in the target,

and 3) there are no sources or sinks of energy in any layer or at the interfaces

between them. Under these conditions, we may solve the one-dimensional con-

duction relation:

0T = k 0:T [5.1]

(e.g., Carslaw and Jaeger, 1959) for the temperature profile, T--T(x,t), in each
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target component as a function of position along the direction of shock propaga-

tion, x, and time, t. The time t=0 corresponds to coincidence of the shock

front and FL-TW interface. In [5.1], p is the density, ce is the specific heat at

constant pressure, and k is the thermal conductivity. Since the temperature

profile in the FL, and particularly the temporal variations of temperature at the

FL-TW interface, control the intensity of thermal radiation sources at the FL-

TW interface, we emphasize these in what follows.

We expect a layer of the DP material at the DP-FL interface and a layer of

the FL material at the FL-TW interface to experience some degree of reshock-

ing. Also, the rough FL surface at the DP-FL interface should compress into a

thin layer with a much higher temperature than the shock-compressed solid FL

material. With this structure, the initial (t=0) temperature profile of the DP-

FL-TW system is of the form

T(x,0) _-

TD -oo <X<-(d+6D)

TD+AT D -(d+6D)<x<-d

Tp+ATm -d<x <-(d-fire)

T_ -(d-6m)< x <-_

TF+ATFw -_.._<x<0

Tw 0<x<oo

[5.2]

(Figure 5.1). Here, d is the FL thickness, and T D and T F are the temperatures

achieved in DP and FL, respectively, by direct release to the pressure of the

shock-compressed TW, which has a temperature Tw. Also, TD+AT D is the tem-

perature of the reshocked layer with thickness _D in the DP at the DP-FL inter-

face, while TF+ATva is the temperature of the reshocked layer with thickness

_rw in the FL at the FL-TW interface. If the surface of the FL at the DP-FL

interface is also rough on some scale, it will compress like a porous material.

Consequently, we assume that a layer with a thickness 6m and temperature

Tg+AT m forms in the FL at the DP-FL interface. Since the surface of the TW
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reshocking are shown for DP (AT D) and EL (A Tin) at the DP-FL

interface, and for FL (ATFw) at the FL-TW interface; these

involve some thickness (_, _, and _) of each target component

adjacent to the interface.
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is much smoother than the DP or FL surfaces, we assume that there is no

reshock heating of the TW material at the FL-TW interface. Note that the DP

and TW are idealized as thermal half-spaces, a consequence of our assumption

about the rates of shock compression and release relative to conduction. Again,

we emphasize that all material properties of each target component are assumed

homogeneous, time-independent, and are referenced to their respective states at

the pressure of the FL-TW interface.

The governing relation [5.1] for each layer, combined with the boundary

conditions of continuity of heat flux and temperature, and the initial conditions

r= ,.>1 _',,'_, _ :_-+.-_1 k .... .4..,.,.,, ,.,_1...... _1,,_ .r_. ,r,¢c _'_ :,.., +r,_ +_,,.,..+ ..,'t.,_,..,_

-- x/d and r = t/tex p. We are particularly interested in this profile for the

FL layer, and the temporal variation of T(0,r), for the FL, which represents the

FL-TW interface temperature. Solving this initial-boundary value problem in

Appendix D, we obtain expressions for WD(f,r), WF(_,r), and Ww(_,r). In particu-

lar, we have, for T_(_,r), -1____0, r>0, the expression

W_(f,r) = T r + A(f,r)AW D + S(f,r) [WD - W_]

+ C(f,r)A T m + D(f,r)A TFw + E(f,r)[Tw - TF] [5.3]

with

1 oo

ACf,r) ---- (l+a_) _ (VDw_)m
m=0

• { erfc{ [(2m+ 1)-1-_]%,} - erfc{[(2m+ 1)A- _-I-tCm6D]CdF}

- v_{erfc{[(2m+l)-f]wr} - erfc{[(2m+l)-_+r, m6_]%} } ]

B(f,r) --
O'i:_ oo

m=0
(v_v_) m { erfc([(2m+l)W_]wF} - v_erfc{[(2m+l)-_]wF} }
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and

r;-l,f) + gF+(f,T;f,--lq-_)
C(f,r) _ g;(f,r,-1,-i+5_)

D(f,r) _ [ g;(f,v,-Sr_f) + g+(f,r;,f,0)

aw F oo

E( 60
(1A-a, ar_) mZao

(vn, v_)m { erfc{[2m-f]wr} - vn,erfc{[2(m+l)+_]wr} } .

The functions g_(_,r;a,b) are defined in Appendix D (Equation [1).40]). In these

expressions, r_ __-_ is the square root of the ratio of the FL thermal

diffusivity to the DP thermal diffusivity, with x _ k/p%, f _ x/d is the nondi-

mensional distance, d is the thickness of the FL, wF = v_/4r, r---_ t/tex p is

the nondimensional time scale, P% _ d2/_texp is the Pecldt number, tex p is the

time scale of experiment, and 6i*---_ 5i/d , where i=DP, FL or TW. Also, we

have

k_Pv%.r } [5"41

and

{ k_.w }_2 [5.5],

which are the thermal inertia "mismatches" (Carslaw and Jaeger, 1959, p. 321)

between DP and FL, and TW and FL, at the pressure of the FL-TW interface.

Also, we have

(av_ - 1)

Pwv_ (ex_ -{- i) [5.6]

and

(an, - 1)

vr_ _- (a n, + 1) [5.7].
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In [5.4] and [5.5], k, p and % are the thermal conductivity, density and specific

heat at constant pressure, respectively, of the designated material for the state

of each material at the pressure of shock-compressed TW. To estimate the

values of a_ and aWF at high pressure, we need the appropriate values of k, p

and %. Density follows from the impedance match and release calculations,

while the specific heat at constant pressure results from the classical thermo-

dynamic models discussed above. Assuming that the thermal conductivity, k,

may be written in terms of lattice, kp, and electronic, ke, components, i.e.

k _ kp + ke, we assume that k_k e for metallic target components. In this

case, we calculate 1% and 1% as a function of temperature from the Wiedemann-

Franz-Lorenz (WFL) relation

Peke

-'_ _- 2.45 X 10 -8 W'_/K 2 [5.8]

(e.g., Berman, 1976), where Pe is the electrical resistivity, to estimate k e from

electrical resistance data on shocked metals, respectively. Assuming the thermal

conductivity of the TW material is controlled by lattice processes, we may use

the thermal conductivity model of Roufosse and Klemens (1974) to estimate k_

As compared to 1% or 1%, k w predicted from this model increases much more

slowly with pressure, partially accounting for the development of a significant

thermal inertia mismatch across the FL-TW target interface. Based on the

release/reshock calculations presented above, we calculate av_ for the Fe-A120 3

and Fe-LiF interfaces using the value of electrical conductivity for e-Fe given in

Table 4.1. This value comes from Keeler (1971), who summarized electrical

conductivity data on e-Fe between 20 and 140 GPa, and it represents an extra-

polation of the trend in the e-Fe data down to standard pressure. We list

results of this calculation in Table 5.1. As evident, Fe is more closely matched

to A120 3 than LiE; since TroT(r) is proportional to CrWF/(l+av, ) (see [5.9]), there is

a greater adjustment of T_T(r ) at the Fe-A120 3 interface, as is shown below.
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Table 5.1. STP and High-Pressure Thermal-Inertia Mismatch Estimates.

STP 100 GPa 200 GPa

Ideal interface

Fe-A120 3 0.56 0.25 0.15

Fe-LiF 0.20 0.11 0.05

Reshocked interface

Fe-A120 3 0.56 0.15 0.07

Fe-LiF 0.20 0.08 0.01
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We now focus on the FL-TW interface temperature,

T_r(r ) _ TF(0,r) -- Tw(0,r), since it is responsible for controlling the interface

source radiation intensity. Specializing the relation for T_,.r(r) to the case where

the DP and FL are the same material (e.g., Fe), we have T D = T,; we also

assume AT D -- AT m for simplicity. In this context, the same equilibrium ther-

modynamic state exists on either side of the DP-FL interface, and T_r(r ) is

given by

T_r(r) -- T F + C(r)AT D + D(r)ATFw + am (T w - TF) [5.9]
(l+awF)

with

GCr) -- 1
(l+a_v) [ erfc{(1-_)wp} - erfc{(1WSD)WF} ]

and

D(r) --- 1
(l_l_am) erf{6_wF} "

Noting that the complementary error function, erfc(x), decreases with increasing

x, and erf(x) increases with increasing x, we see that D(r) will decay with time,

while G(r) can either grow or decay. Most radiation observations constrain a

decreasing temperature with time (see discussion below); however, there may be

some suggestion of the influence of AT D on Tn_(r ) in the data on the Fe-LiF

interfaces discussed below.

If we assume AT D --- 0 = AT m and/or 6D = 0 -- 6_, [5.0] reduces to

T_r(r) -- Tp + D(r)ATFw +
aWF

(l+aw_) (Tw - TF) [5.101,

which is the reshock model considered by Grover and Urtiew (1974). Further, if

we let _--*0, we have, from [5.10],

T_r(r) -- T,d =-- TF +
aWF

(Tw - 'r_) [5.11]
(1+o_)
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relating the temperature of the smooth FL-TW interface, T1d, to the tempera-

ture of the direct-release state, T F. Note that T_ approaches T F as a_--.0, and

T w as o_--*_. Also, note that that ThaT(r), as given by [5.11], will be time-

dependent only if the FL-TW interface is reshocked. We use [5.10] with the

reshock-state temperature in the FL at the FL-TW interface (TF+/XTFw), the

shock-compressed temperature of the TW (Tw) , o F and a_, to calculate T_r(0),

which is labeled "reshock conduction" in Figures 4.4a-b. Similarly, we use

[5.12] to calculate the "release conduction" temperatures from "IF, T_, and a_,_.

As stated above, the Fe-LiF thermal mismatch is greater (i.e., av_ is much

smaller: see Table 5.1) than that of the Fe-A1203 interface, mainly because LiF

is more compressible and less conductive (thermally: see Table 4.1) than A1203.

In this case, the Fe-LiF interface temperature remains closer to the temperature

of Fe at the interface than does the Fe-A1203 interface temperature. Further,

the greater compressibility of LiF gives it a much higher shock-compressed tem-

perature than Al203. For example, T s for LiF (from [4.52])) at 160 GPa is

4200 K (ignoring the possibility of melting), while T. for Al203 (also from [4.52])

at 230 GPa is _ 2750 K. The temperature mismatch is much less across the

Fe-LiF interface, and the effect of thermal inertia mismatch on Twr is less

extreme.

In Figures 5.2, 5.3, 5.4 and 5.5, we present calculations for TF(_,T ) and

Tw(_,r) from [5.3] and [D.25], respectively, and the associated Twr(r ) = TF(0,T),

with AT v = /XTm, etc., as assumed to write [5.9], for Fe-Fe-TW targets. To

construct these figures, we calculate the compressed/released and

reshocked/released states achieved in an Fe-Fe-A1203 target impacted by a Ta

projectile at a velocity of 5.67 kin/s; we assume the calculated reshock tempera-

tures at the DP-FL and FL-TW interfaces are the initial values. This impact

velocity is that of one of the experiments (Fe-Fe film-Al203) discussed below.

The basic result here is the dependence of the rate of change of Tn_r(r ) on P%
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Figure 5.2. Variation of the temperature near a reshocked Fe film/foil-A1203

interface. Part (a) displays the variation of temperature in the

EL, T_(_,r), and SW, Tw(_,r), as a function of nondimensional

(ND) position, _, with respect to the FL-TW interface (_=x/d_0)

at four different times during a 300 ns experiment. The nondi-

mensional range of-1 to 1 corresponds to -d to d, where d is the

thickness of the FL layer. "Reshocked layer" refers to the nondi-

mensional thickness of the reshocked layer, _ Part (b) depicts

the corresponding variation of the interface temperature, T_r(t ).
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Figure 5.3. Variation of temperature near a reshocked Fe film/foil-A1203

interface. The reshocked layer depicted in part (a) is thicker than

that of Figure 5.2a, and relative to the conduction length scale (as

represented by the Pecl_t number), causing the temperature of the

reshocked layer, and so that of the FL-SW interface, to decay

more slowly. In part (b), the "t=0" curve corresponds to Tn_w(0),

while that labeled "t=infinity" corresponds to Tn_r(C_). The mag-

nitude of these asymptotic values of T_T(t ) is governed by that of

the FL-SW thermal-interia mismatch, a_.
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Figure 5.4. Variation of temperature near a reshocked Fe film/foil-Al203

interface. In this figure and Figure 5.5, we hold the reshocked

layer thickness constant and vary the Pecldt number, or conduc-

tion length scale, _X/'_exp, of the FL. Since the Pecl_t number is

inversely proportional to the conduction length scale, a relatively

small Pecldt number (0.1) results in a fast decay of T_r(t), as

shown in part (b).
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Figure 5.5. Variation of temperature near a reshocked Fe film/foil-Al203

interface. With a Pecl_t number of 10, the conduction length

scale of the FL is small relative to the thickness of the FL, and

the interface temperature decays very little over the time scale of

the experiment.
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and 5F_. From [5.9], the change in T_.r(r)with time is given by

{dT r) } = G,(r)ATD+ D,(r)nTFW [5.12]

with

and

= _G'(r) (l+exw) { (l-(h_)e-[(14_D)_F]'(l+6_)e -[(l+_r_)_]'}

D'(r) -- -2(l$-a_) { P% 1/24-77}

For the particular case we have plotted, and as noted above, unless

_1, 5D*_.fl, and/or ATD>>ATFw , the ATFw term dominates TmT(r ). Since

D'(r), the coefficient of the dominating term, is always negative, the rate of

change of T,tr(r ) will be negative, and Tnvr(r ) will consequently decrease with

time. Further, when the D'(r) term in [5.12] is dominant, dT.cr/dr is propor-

tional to -_uexp(-#2), with # _ 6_x/'P-%/4r = (_w/2v_. In other words, over

the time scale of the experiment, t_texp, # represents the ratio of the layer

thickness to the conductive length scale, _. Note that #exp(-# 2) achieves

a maximum value near #.--_1 and is much smaller (--_0) for # much greater or

less than unity. In Figures 5.2 and 5.3, we hold P% constant (i. e., the conduc-

tive length scale, _x/_exp) and vary the layer thickness, _ As shown in Figure

5.2, with P%--l, Tr_r(r ) for a thin reshocked layer (5_----0.1) relaxes very quickly

(i.e., faster than can be resolved experimentally) to near Tnvr(C¢), while in Fig-

ure 5.3, we see that a thicker reshocked layer (6_-0.5) will relax much more

slowly, and on a resolvable time scale. A similar set of events holds if we fix the

layer thickness and vary the conductive length scale of the FL, as we show in

Figures 5.3a-b. For a conductive length scale large compared to the reshocked-

layer thickness (Figure 5.4, P%=0.1 and _--0.5), Tnvr(r ) relaxes relatively
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quickly, whereas if the conductive length scale is small relative to the layer

thickness (Figure 5.5, P%_10 and _-0.5), there is little or no resolvable

relaxation of T_(r) away from Thor(0). Obviously, _ and _/'_exp trade off in

their effects on Tn,.r(r), introducing some ambiguity; only their ratio has a dis-

tinct effect on Tn_v(r). In any event, for P%_-_l and intermediate (5_--.0.3-0.7)

reshock-layer thicknesses, T_cr(t) is time-dependent on an experimentally resolv-

able time scale, and its variation with time produces a corresponding radiation

source time dependence,as we show in the next section.

§6. Radiative Transport in the Target

With a model of the initial temperature profile of the target components

and interfaces, we now establish a connection between the radiation intensity of

sources at these temperatures and the radiation intensity emerging from the free

surface of the TW during the experiment. The target is represented as a series

of plane-parallel layers (Figure 2.2) with Fresnel boundaries (Boslough, 1985;

Appendix E). We assume that: 1) source radiation is collimated by the target

geometry; 2) all radiation sources are thermal, and so their intensity is given by

the Planck function; 3) sources are located only at the FL-SW and/or uniformly

throughout the SW, particularly along the direction of shock propagation; and

4) all optical properties are independent of wavelength. The model spectral

intensity of radiation emerging from the free surface of the USW (unshocked

window), Ixmod _ I_mod(X,t), as a function of wavelength, X, and time after the

shock-front has passed the FL-SW interface, t, is given by

Ixmod(),,t ) -- _(t) I_(k,Tw) + _x_r(t) I_[)_,T_(t)] [6.1].

The Hugoniot temperature of the $W, Tw, is homogeneous, uniform, and con-

stant since we assume a uniform distribution of SW sources. The interface tem-

perature, T_rr, is a function of time, or constant, in the context of the
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conduction model discussed above.

tity. In [6.1], we identify

and

The "X" subscript denotes a spectral quan-

_x_t) = _x(t)[1 - rxsw(t)] [1 + rxn_rrrXsw(t)] [6.2]

_x_(t) = _x(t) rx_t) [1 - rx_-r] [6.3]

as the effective normal spectral emissivities of the SW and FL-SW interface,

respectively. As evident from [6.1], ex_ and eX_-r are the properties connecting

the intensities of the sources within the target and the intensity emerging from

the target. The function @x(t) is defined by

@x(t) _ [1 - rx_ ,xt_vv(t) [1 - rx_ ] [6.4]

and represents the effect on source radiation of propagation through the FS,

USW, and SF. In Equations [6.2]-[6.4], rx_ , rx_ and rx_ r are the effective normal

spectral reflectivities of the FS, SF, and FL-SW interface, respectively. Further,

rxt_(t) _ e-a;_(1 - t/t.) [6.5]

rXsw(t ) _ e-aCsw t/t_

and

[6.6]

are the effective normal spectral transmissivities of SW and USW layers, respec-

tively. The quantities a)_v and ax*sw are nondimensional forms of the effective

normal spectral absorption coefficients in the USW and SW, respectively, and

they are given by

and

- [6.7]

respectively, where axs w and axusw are the dimensional counterparts of ax*sw

W_ m= [6.s],

and
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ax_usw, respectively. Also, xFs is the thickness of the TW, and so the position of

the FS with respect to the FL-TW interface (Figure 2.2). Note that ax'sw and

a_*_.w mediate the explicit time dependence of _w and e_w- In writing [6.?] and

[6.8], we have also assumed steady shock propagation such that the position of

the shock front in the TW (Figure 2.2) may be written x_(t) _ (U-v)t.

From Equations [6.?] and [6.8], a_ and a_ w will be of order unity when

(x - exp) -I , [6.0],

which are both _-_103m -I, since the thickness of the TW is generally _10-3m.

So for values of axs w and/or axusw much larger or smaller than these "geometric"

values, source radiation intensity is resolvable or not affected by propagation

through the SW and USW, respectively. The USW is usually transparent, so

ax_-w_0; if the SW is transparent as well, then a×sw_-_0 and, from [6.2] and [6.3],

we have

exa_r(t) .._ _r(0): (1-rxws)(1-rx_)(1-rx_rr) [6.10]

and exsw---- 0. In this case, IXmod is governed entirely by sources at the FL-SW

interface, and any time dependence of the observed radiation history is due

solely to T_r. Note that the bound on eXiT in [6.10] is also the initial value of

exert (i. e., it can only decrease with time). However, if the TW becomes opaque

upon shock compression, we have axsw---_. Again, with axe0 , we have

_xu_.r--_0 and

_x_t) _ (1-rxrs)(1-rx_) [6.11].

In this case, observable sources are confined to the shock front (this is the "ideal

case" of Boslough, 1985). The impact of these and other model parameters on

IXmod(),,t ) is more explicitly depicted by writing the partial derivatives of

Ixr, od(k,t ) with respect to k and t. From Equations [6.1], [6.2], and [6.3], these

are
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X { C31Xm°d

and

texp { _IXm°dot }

---- P (/_sw)_xsw(t)I_(X,Tw) + P(/_r)_X_r(t)I_[X,T_T(t)] - 5I),mod()_,t)[6.12]
t

--- IXmodaX_w

+ { [(1-rxrcr)+2rxn"rr_w(t)]In()"Tw) - _X_.r(t)In[X,T=,.r(t)l } ax*sw

+ P(_u_rr)ex_r(t)Ir_[X'T"_r(t)] { dlnT_'rdt } [6.13]

with

P(_) ----
1 - e-_

and

_sw ------

C2 C2

kTw ' /_¢r_ XT_. r

Relation [6.12] exemplifies the fact that the wavelength dependence of IXmod is

due solely to that of the Planck function, since we have assumed that the opti-

cal properties are independent of wavelength. We make this assumption

because its not clear at this point that existing data can resolve wavelength-

dependent optical properties (e.g., Svendsen and Ahrens, 1987, Chapter II).

Again, for most TW's, we have ax_._0. If, in addition, T_r(t ) is approxi-

mately constant with time, which may occur in a thick (Pep>>l) or thin

(P%<<l) FL with a thick (6_-_d) or thin (_ir_<<d) reshocked layer of FL

material, or at the smooth interface, as discussed above, [6.13] reduces to

texp { OIXm°dcOt }), = { [(l-rx_rr)+2rx_'rxsw]I_(k'Tw)- _x=crlrl[k'T_'r(t)] } ax*sw [6.14].
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This will be positive if

[(1-rx_rr)+2rx_rrr_w]I_(X,Ww) > _)am.I,[k,Wn_rr(t)] [6.15],

but otherwise negative, since ax*sw is always positive. Consequently, with a

finite value of aX*sw and a time-independent interface temperature, I×mod will

grow or decay with time on the basis of the sign of [6.15]. If the TW is initially

transparent and remains relatively transparent upon shock-compression, we

have ax*usw _0 and a)_sw _-_0. Putting these into [6.13], we have

OlXmod"_ } x ---- P(_)_xn_I_[X,T_r(t)]{ dlnT_,r_. } [6.16]

and any variation of IXmod with time should reflect that of T_rr through the

Planck function. In particular, Ixmod will increase or decrease as T_. r increases or

decreases at a given wavelength.

§7. Models and Data

We compare models and data in the context of the standard X 2 statistic

Since the radiation

T_r(t), [7.11 is not

ak -------{r_, a_ , Tsw, rxn,-r, T_-r(t) }

model is nonlinear with respect to

strictly a maximum

[7.2].

axu_w, a_, Ts_ and

likelihood measure, even if the data

(e.g., Bevington, 1969; Press et al., 1986). In our case, it given by

NxN, 1 { }2x2(a) --= _ _ -- Ixexp(_ki,tj) - IXmod()_i,tj;a) [7.1].
i=1 j=l O'i_

In this relation, Ix,xp(ki,ti) , Ixmod(ki,ti;a), aii __----a(),i,tj) are the experimental and

model spectral radiances and the experimental uncertainties, all at a particular

wavelength, ki, and time, tj. Also, N x and N t are the number of wavelengths

and times sampled, respectively, in the experiment. The five-component "vec-

tor" a is the model parameter vector, with components a_, in our case given by
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errors are normally distributed. However, if the best-fit values of the ak (i.e.,

ak(mi,) ) have uncertainties sufficiently small such that the value of IXmod can be

well approximated by the first two terms of its Taylor series representation

about IXmod(k,t;ak(min)), x2(a) will be very close to the maximum likelihood esti-

mate (Press et al., 1986).

We note that rxFs and ax_ are not included in [7.1], since they may be cal-

culated or determined from index-of-refraction and absorption data for the TW.

From the conduction model, we have explicit expressions (e.g., [5.9]) for the

time dependence of Tn,rr, which allow us, in principle, to constrain am, etc.,

given fitted values of T_rr- Similarly, the fitted reflectivities allow us to con-

strain changes in the indices of refraction across boundaries (e.g., the shock

front). Note that, in general, the optical properties constrained from [7.1] can-

not be X-dependent unless we give them, a priori, an explicit k-dependence,

with constants whose values are chosen by the fit (i.e., by the data). Since we

have no reasonable expectation for this k-dependence, we cannot truly constrain

it. It is for this reason, plus the limited resolving power of the data itself

(Boslough, 1984; Svendsen and Ahrens, 1987, Chapter II), that we assume

axsw , axm w, etc., are independent of k in the previous section. However, we may

determine an apparent k-dependence of the optical properties if we specialize

[7.1] and fit at each wavelength over time, i.e.,

X2(ki;a) _ _ 1 Ixexp(ki,tj)_ IXmod(ki,tj;a) [7,31.
j=l ¢ri[

Svendsen and Ahrens (1987, Chapter II) constrained ak(min) in this manner for

radiation data from Ta-Ag-MgO targets. We use a very simple version of this

approach below with the data of Bass et al. (1987) to constrain axsw . First,

however, it is instructive to consider fits to data using simpler models than that

represented by [7.1] and [7.3]. Most earlier workers (e.g., Kormer, 1968; Vrtiew,
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1974; Lyzenga, 1980; Lyzenga et hi., 1983) constrained model parameters via the

greybody relation

I_(k,_gb,T_b)---__gbI_(k,Tgb) [7.4]

The associated X 2 statistic is given by

Nx

E
2

1
_-7{ Ixexp(ki,t) - I_b(Xi,tj ;_gb,Tgb) }
aij

[7.5]

Since the summation in [7.5] averages esb over all observed wavelengths, it

represents a wavelength-averaged (i.e., total) effective emissivity. Given that

the only ),-dependence in the greybody model is contained in the Planck func-

tion, I_(),,T), the more closely the data follow the blackbody wavelength distri-

bution at a given temperature, the better the fit (i.e., the lower the value of

Xsb2(tj)). Since both the data and model depend explicitly on ),, the fit proceeds

over all observed wavelengths at a given time during the radiation history. As

a result, egb and Tg b are functions of time.

Since I,b depends nonlinearly on Tsb , we must find the best fit values of _gb

and I_ iteratively with the minimization constraints on Xgb2. To obtain starting

values of egb and Tsb for the nonlinear fit, and for comparison, we may use

Wien's approximation to I_(),,W)in Xg2(tj), which follows from Ip,(),,W)in the

limit exp(C2/),T)>> 1, i.e.,

2C1 e-C2/_Twsb [7.6]
Iwgb(),,ewgb,Twgb) _ ewgb _(),,Twgb) _---ewgb -7"

The relative error incurred in approximating In by ]_ is equal to exp(-C2/),T);

this approximation is accurate to within 1% for ),TH3X10 -8 m'K (Siegel and

Howell, 1981). Since we can fit Wien's relation to the data in a linear least-

squares sense, we can solve for ewgb and Twg b directly (i.e., without iteration).

With these values, we may safely apply an iterative technique to [7.5] to con-

strain egb and Tg b and to be assured of a nondivergent fit. We use the Golden
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Search (GS) and Levenberg-Marquardt (LM)iterative techniques (Press et al.,

1986) to obtain three different fits: 1) GS with _gb variable, 2) GS with _b---1,

and 3) LM with e_b variable.

We present a greybody fit to the radiation observations from two experi-

ments of Bass et al. (1987) in Figures 7.1 and 7.2. Figure 7.1 displays a fit to

data from an experiment on an Fe-Fe film-A1203 target impacted by a Ta pro-

jectile traveling at 5.67 km/s. The trend in Xs_(t) suggests that the fit gets

better with time. Strictly speaking, X2---_,=t=2_/_ as v---_oo, where v is the

number of degrees of freedom in the fit (i.e., the number of data minus the

number of parameters; 2 in this case); we might hope that Xg_'_2 represents a

reasonable fit for the greybody model. All of the fits show Tsb(t ) decreasing

with time, and for the variable emissivity fits, _sb(t) increases slightly with time.

This behavior is characteristic of most Fe-Fe-A1203 experiments of Bass et al.

(1987). For all the Fe experiments, we note that Tsw<<T_,.r(t), and that _sb(t) is

inconsistent with axsw _cv (Boslough, 1985). In this case, from [6.1] have

Ixmoa(k,t) --_ _(t)I_[k,T_T(t)] [7.71

and the decrease of Tab(t ) with time (Figure 7.1d) can be explained in terms of

Thor(t), as detailed above. Also, the slight increase of _gb(t) with time (Figure

7.1c) can be explained most simply by a slight decrease of the A1203 absorption

coefficient upon shock compression. This may be consistent with the observa-

tion that the refractive index of Al203 seems to decrease with pressure

(--_-0.001/GPa between 0.1 and 1 GPa: Davis and Vedam, 1987). Since

a_.w,_0 for Al203, this observation implies that axsw --_0 as well. In this case,

[7.7] implies that

IXmod(k,t) _ _m,,r(0)I_[k,Tm.r(t)] = (1-rws)(1-r_)(1-rxnvr)I_[k,T_r(t)] [7.8]

for the Fe-Fe-Al203 experiments.
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Figure 7.1. Observed radiation history and X 2 statistic of greybody model

(_gb,Tgb) to radiation data from Fe-Fe film-Al20 3 target impacted

by a tantalum projectile at 5.67 kin/s, resulting in an Fe Hugoniot

pressure of 244 GPa and an AI20 3 Hugoniot pressure of 190 GPa,

which is also the Fe-A1203 interface pressure (Bass et al., 1987).

Part a) of this figure displays the radiation intensity (spectral radi-

ance) data, collected at four wavelengths: 450, 600, 750 and 900

nm. Part b) displays the "goodness" of the greybody fit, as indi-

cated by Chi2--X 2, part c) displays the best fit normal greybody

effective emissivity, _b(t), and part d) shows the corresponding

greybody temperature, T_b(t ). Fits using Wien's law, Golden

Search (GS), GS with the effective emissivity set to 1 (GSel), and

the Levenburg-Marquardt algorithm (LM) are indicated.
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Figure 7.2. Observed radiation history (a), X _ statistic (b), greybody effective

emissivity (c), and greybody temperature (d) for Fe-Fe foil-LiF

target impacted by a tantalum projectile traveling at 5.41 km/s,
resulting in an Fe foil Hugoniot pressure of 227 GPa and an LiF

Hugoniot pressure of 122 GPa.
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In contrast with this last fit, the experimental and greybody fit results

displayed in Figures 7.2a-d, for an Fe-Fe-LiF target impacted by a Ta projectile

traveling at 5.41 km/s, exhibit a relatively constant greybody temperature (Fig-

ure 7.2d) with time and a systematically decaying greybody effective emissivity

with time (Figure 7.2c). In this case, T_b(t ) implies a relatively constant W_r(t),

as we expect for a smooth interface (Grover and Urtiew, 1974; [5.11] above) or a

reshocked interface with _vv>>2 _x/_p (Figure 5.3d) or _w<<2v_tex p (Figure

5.2b). The reshocked interface with _>>2v_tex p is less likely than the latter

possibility, as implied by the the data-model comparison in Figure 4.5b. The

behavior of _b(t)_t) reflects a shock-induced increase in the absorption

coefficient (i.e., _ _>ax_w)of of LIP via [6.6], [6.7] and [6.14]. Wise and Chha-

bildas (1986) found, via laser interferometry, that LiP remains essentially trans-

parent up to 160 GPa. The fluctuations in the fit after about 160 ns may be

due to wave reverberations or other dynamic effects, which are beyond the scope

of our model, and/or possibly to the influence of reshock at the Fe-Fe foil inter-

face, as mentioned above.

In judging the value of any fit, the resolving power of the data is an issue.

In particular, the ability of the data to constrain model parameters may be

judged through confidence limits (e.g., Press et hi., 1986). We display these for

Fe-Fe-A120 3 and Fe-Fe-LiF experiments in Figures 7.3 and 7.4, respectively.

Parts a) and b) represent confidence limits for Xg_(50 ns) and Xg_(250 ns),

respectively. The darkest shaded (i.e., central) region in each diagram

represents that part of model-parameter space which explains 68.3% of the

data. Similarly, the 95.4_ and 99.99_ regions explain corresponding percen-

tages of the four-wavelength data. Note that these limits are consistent with

the trends in Xs_(t) (Figures 7.1b and 7.2b). The basic information conveyed by

these diagrams is a measure of the uncertainty of the fits; for example, from

Figure 7.3, the fitted value of T_b(50 ns) has an uncertainty of about -4-400 K at
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Figure 7.3. Confidence limits for the LM fit displayed in Figure 7.1c-d near

the beginning (50 Its) and end (250 ns) of that part of the radia-

tion histories fit by the model. The designations 68.3_0, 95.4%

and 99.990"_ refer to that fraction of the data (which total 4)

satisfied by the range of model values (_gb,Tsb) encompassed within

the appropriate regions and contours, subject to the assumption

that the experimental errors are normally distributed.
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Figure 7.4. Confidence limits for the LM fit displayed in Figures 7.2c-d near

the beginning (50 ns) and end (250 ns) of radiation histories fit by
greybody model.
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the 68.30/0 level, and about +600 K at the 95.40/0 level.

As stated above, the interface contribution to the observed intensity dom-

inates the SW contribution (Bass et al., 1987). On the basis of this observation,

we may reasonably fit a simplified version of the full radiation model to the

data via [7.5]. We do this for the Fe-LiF data fit to the greybody model in Fig-

ure 7.5. First, we note that, at t=0, IXmod is, from [6.1],

Ixmod()%0) = _xn_(0)I_(k,T_r(0))

-- [1 - rxrsle-a_usw[1 - rx._][1 - rx.crlI_[X,T.cr(0)] [7.9].

So the magnitude of Ixmoa(X,0 ) is controlled by the reflectivities, ax*_.w and the

initial value of Tact, which is dependent on the values of Tr, ATFw, T w and a m

through [5.12] in the simplest case. The greybody fits in Figure 7.2 suggest

that, for this experiment at least, Tn,rr(t ) is approximately constant. Assuming

this and a),us w _ 0, we approximate [6.1] as

kmod(X, t) = _Xnvr(t)I_[)_,Tn_r_0)]

-- (1 - rws)(1 - r_)(1 - rx.cr)e-at_/t_xpI_[X,T_r(0)] [7.10].

In this case, the time dependence of IXmod is due solely to the SW transmissivity.

Using [7.10] in [7.3], along with W,_r(0 ) = Tsb(0), we may fit the Fe-LiF data for

a)_sw. We present the results of this fit in Figure 7.5. The data are cut off at

160 ns to reduce the influence of possible dynamics or Fe-Fe interface reshock

on the fit. The parameter values resulting from this fit are given in Table 7.1.

We eliminate rxFs from the fit since it is equal to 0.08 for LiF, as estimated from

n--1.39, the index-of-refraction of LiF at STP (CRC Handbook). Since the

index-of-refraction of LiF seems to increase with pressure (--_0.002/GPa: Burn-

stein and Smith, 1948), we expect r_r_s for LiF. Clearly, LiF has lost some

transparency upon shock compression. The trend in axs w toward lower values at

longer wavelengths is unresolved but consistent with the Bouguer's law
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Figure 7.5. Time-dependent spectral radiance fits to the data displayed in

Figure 7.3a for the Fe-Fe foil-LiF target. We fit [7.9] to the first

half of the Fe-LiF data displayed in Figure 7.3a via [7.2]. The

slope of each continuous curve, representing the fit for the

corresponding wavelength, constrains the effective normal absorp-

tion coefficient of the shocked LiF, while the intercept constrains

the Fe-LiF interface and shock-front effective normal reflectivities.
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Table 7.1. Simplified Radiation Model Parameters. _

Wavelength (1-r_)(1-rx_r) axsw
(nm) (m l)

450 0.76 137

600 0.56 134

750 0.68 125

900 0.67 122

6 For this fit, x_--4.15 mm, texp--390 ns, T_r

wavelengths in fit.

--4200 K and r_ m_ 0.08 at all
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expectation that a x ---47rWe/_k , if We, the electromagnetic extinction coefficient

(Siegel and Howell, 1981, p. 427), is constant or varies inversely with ),. As sug-

gested above, similar fits for Fe-A1203 imply that axusw> axsw, an intriguing pos-

sibility which we do not yet understand.

Lastly, we take the results of the greybody fit shown in Figure 7.1d for the

Fe-Fe-A120 3 experiment, assume Tsb(t ) = Thor(t), and use [5.10] to write

(1 -{- awr ) [Tgb(0 ) - Tsb(t,xp) ] [7.11].
ATFw= erfc{_/2V_texp }

With Tsb(0 ) - Tsb(t_p ) = 1200 K from the fit displayed in Figure 7.1d, we may

calculate the trade-off between the FL-TW interface temperature due to

reshock, AT_v , and the ratio of the reshocked-layer thickness, _ to the FL

conduction length scale, V_texp, for different values of the FL-TW interface

mismatch, a_. These calculations, displayed in Figure 7.6, imply that the

larger the reshocked-layer thickness relative to the FL conduction length scale,

the higher the reshock temperature at a given thermal mismatch. For this par-

ticular experiment, we expect awp_0.1 from calculations discussed above; we

also expect ATFw,.._2000 K from the calculations presented in Figure 4.5a. In

this case, Figure 7.6 and model calculations imply that 5rw_2V_texp_-_10-Sm.

Since this is a film experiment, with d--_10-6m, we tentatively conclude that all

of the film layer experienced reshock in this experiment.

§8. Summary

We consider the effects of release/reshock, phase transitions, and conduc-

tion on the shock-compressed temperatures of the target components and their

interfaces. Comparison of the model with the results of experiments on Fe-Fe-

LiF and Fe-Fe-Al_O 3 targets suggests the following:
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Figure 7.6. Magnitude of temperature at FL-TW interface due to reshock,

ATFw, versus the ratio of the reshocked layer thickness, _, to the

conduction length scale, _. This trade-off is constrained by

the magnitude of Tsb(0 ) - Ts_(texp) from from the greybody fit for

the Fe-Fe-A1203 data displayed in Figure 7.2a.
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le Release/reshock calculations for Fe-Fe-A120 3 targets, in comparison with

the experimental results of Bass et al. (1987), suggest that Fe experiences

approximately 200-1500 K of reshock heating at both Fe foil-A120 3 and Fe

film-A120 3 interfaces when released from _ 245-300 GPa to interface pres-

sures of 190-230 GPa. Below 190 GPa, reshock for Fe-A120 3 interfaces

appears to be minimal. Both the data and calculations suggest that the

degree of reshock is strongly pressure-dependent, which is consistent with

the results of Urtiew and Grover (1974). In contrast, Fe released from the

same range of Hugoniot pressures to Fe-LiF interface pressures between

130 and 160 GPa experiences little or no reshock. This more ideal nature

of Fe-LiF interfaces is enhanced by the fact that, besides being a poorer

shock-impedance match to Fe than A1203, it is also a poorer thermal

match, resulting in less change in the interface temperature away from the

Fe-release state temperature. Comparison of data and calculations for both

of these windows suggest that, while attention to the initial conditions of

the interface is essential to minimize reshock, a more important factor may

be the choice of window.

u In the absence of energy sources and significant energy flux from other

parts of the target, the rate of change of the interface temperature, T_(t),

is proportional to-pexp(-p2), where _u = _/2v_. For Fe at FL-TW

interfaces, _x/'_xp_-¢10 _m; consequently, a 100 _m reshocked-Fe layer

would relax very little, remaining near Tn,,r(0 ) on the time scale of the

experiment. However, if _,w--_l _um, Tn_r(t ) relaxes almost instantaneously

to its value W_r(c_ ). Wn_(t ) is resolvably time-dependent for _2v_tex p.
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.

.

Greybody fits to an Fe film-A120 3 experiment of Bass et al. (1987) show the

greybody effective emissivity, tsb(t), to increase slightly with time, while the

greybody temperature, Tsb(t), decreases with time. This behavior is

characteristic of most Fe-A1203 experiments. The decrease of Tsb(t ) can be

explained in terms of the model for Tn,.r(t), and it implies that 6Fw'_2V/'_texp

for this experiment. Further, assuming T_b(t ) --T_,.r(t), the greybody fit

constrains the amount of reshock, AT, w, to be _2000 K with a,,_--_0.1 and

E_w_2 _/'_exp. A slight decrease of the A120 3 absorption coefficient upon

shock compression can explain the slight increase of tsb(t) with time. This

may be consistent with the observation that the refractive index of A120 3

seems to decrease with pressure. In contrast, greybody fits to data from an

Fe-Fe foil-LiF target show a relatively constant greybody temperature and

decreasing greybody emissivity. The constant greybody temperature

implies a constant interface temperature, as we expect for an interface

experiencing minimal reshock, while the decaying _sb(t) is consistent with a

shock-induced increase in the absorption coefficient of LiF. Setting

T_r(0 ) = Tgb(0), we fit a simplified version of the full radiation model to

these data to find axsw--_100 m -1 (Table 7.1) for LiF, shocked to 122 GPa in

this experiment.

Finally, we note that the equilibrium thermodynamic Hugoniot tempera-

ture of Fe is strongly influenced by electronic and/or anharmonic contribu-

tions to cv at high pressure, as evidenced by both 1) the results of Boness et

al. (1986) when used in Equation (8), and 2) by requiring the solid Fe

Hugoniot and an extrapolation of the experimentally constrained Fe melt-

ing curve (Williams and Jeanloz, 1986) referenced

intersect at 245 GPa (Brown and McQueen, 1982).

provides a value of f_(Pi) _- 0.046 J/kg.K 2,

to this Hugoniot, to

This last constraint

as compared to

u
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F(Pi)--0.090 J/kg-K 2 from the work of Boness et al. (1986), suggesting

some anharmonic contribution to cr of e-Fe. These results substantiate the

arguments of Brown and McQueen (1982, 1986) for the importance of

including electronic contributions to c v when calculating T H of shock

compressed metals.
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§9. Appendix A,: Equilibrium Thermodynamics and Shock Compress-

ion

The calculations discussed in the text for Fe-Fe-Al20 3 and Fe-Fe-LiF tar-

gets are based on classical (i.e., equilibrium) thermodynamic models of the

Helmholtz free energy, F(T,p), for the solid- and liquid-states of Fe. As dis-

cussed in the text, this model is based on 1) a Debye model for the harmonic

contribution and 2) the low temperature (T< <Tr, the Fermi temperature) elec-

tronic contribution and 3) high temperature (T>ev, the Debye temperature)

anharmonic contribution, which we combine for simplicity, since they are of the

same order in T. The liquid-state model is presented elsewhere (Svendsen et al.,

1987, Chapter V). In the last two parts of this appendix, we detail certain rela-

tionships between isentropic and Hugoniot states using this model, and a

method to recenter experimental U-v relations to the STP density of high pres-

sure phase, both of which are used in the calculations.
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A.1. Solid-State Equilibrium Thermodynamic Model

For a cubic or isotropic solid material subject to an isotropic state of stress,

the combination of the Debye model for the harmonic contribution along with

the high-temperature anharmonic and low-temperature electronic contributions

provides an expression for the Helmholtz free energy, F(T,p), i.e. (e. g., Wallace,

1972, Sects. 5, 19 & 24; [4.25] in the text)

F(T,p) _ {¢(p) + 9_,ROD(p)}

1
+ 3vR {In[l-e-×D] - "_ED(XD ) }T + A2(p)T 2- 1F(p)T2 [A.1]

Note that F has units of J/tool. For simplicity, we neglect possible band-

structure and electron-phonon interaction contributions to F in writing [A.1].

Relation [A.1] is correct to O(T -3) in the anharmonic contribution to F, and to

all orders for the harmonic contribution in the context of the Debye approxima-

tion. This slight inconsistency is due to the unavailability of a tractable anhar-

monic model, analogous to the Debye model, for the materials of interest. Also,

for Fe, we are guided by the results of Andrews (1973), who was able to fit vari-

ous data on the thermostatic properties of the a and e-phases with a Debye

model for the harmonic contribution to F, ignoring anharmonicity altogether

(although anharmonicity may be reflected in the value of his F). As discussed

in the text, the anharmonic coefficient A2(p) is dependent on the particular

model chosen for the pressure and temperature dependence of the anharmonic

phonon-frequency spectrum. Since we do not have such a model for the materi-

als of interest here, we simply combine it with the electronic contribution to

form _2(p), as given in the text.

On this basis, [A.1] provides the means to a rational parameterization of

the approximate density- and temperature-dependence of a number of solid-
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state properties, such as the pressure, i.e.,

P(T,o)-- p =--P(O,p)+ 3_,Rp'_(×D)T + _.O_oaT2
T

with

[A.2]

[A.3],

where % is the lattice Grlineisen's parameter in the Debye approximation, as

defined in the text. From [A.1], the molar entropy is given by

The isothermal bulk modulus is given by

OP } __ K(0,p)K_T,p)_p _ W [A.5]

+ 3uRp%(l - % - 3%)ED(xD)T + 9uRp%{ q'oXo[e_- 1] } "r

+ -_.pr.,.,(1- _)_T 2

with

K(O,p) _ P(O,p) + p{p{ de

and

which is assumed constant.

sity) is

+,2{
dp 2 8

dlnp

The molar heat capacity at constant volume (den-
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Cv(T,p) _-T{ 02F 3XD"_ } "-3uR {4ED(xD)p [eX--_-- 1] } + _T [A.7].

The change in pressure with temperature at constant density given by, from

[A.3]

{aP} ___aK.r = 3vRp,TD{4ED(xD )p'_Cv= _ p

From [A.7] and [A.8], we have

vC,_

and so

= %C v + (w - %)f_T

-- - "),D).-_vT

3XD

[eX-_- 11 } + pwi2T

[A.8].

[A.9],

[A.10],

which is very weakly temperature-dependent above O D since w_ and i2_3uR.

Other properties given by a ratio of the derivatives of F(T,p) include the

coefficient of thermal expansion,

a(T,p) -- P(qCv) [A.11]
I%

the isentropic bulk modulus

Ks(T,p)-- KT + p(OCv)'rT , [A.12]

and the heat capacity at constant pressure,

C,(T,p)-- Cv(1 + a3T) [A.13],

These are the solid-state model properties used in the text.
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A.2. Connection of Isentrope and Hugoniot

To use the model as detailed above, we need to calculate the change of cer-

tain model properties, such as P, with density at zero temperature. So, we

relate the zero temperature model properties to the known change in density

along an appropriate isentrope or the Hugoniot, as follows. From [A.3], we have

P(0,p) = P(Ts_,p) - 3vRPffDED(x_,)Ts - 2pwfY_ [A.14]

with X,. _ OdT_. P(Tsl,p)is given by [4.27] in the text, i.e.,

p(T_,pR) __ PHP_H Aes_(pa) + P___H[l_(l+2_H)r/_] (pH+pi) _ Pi [A.15]
Pi

and Ae_ is calculated numerically, as discussed in the text. In a similar fashion,

we have, from [A.5] and [A.12],

KT(0,p) -m--Ks(W,p ) - pg, cvT- 3vRp-_D(1 - %- 3%_)ED(xD)T

"TDXD 1

- 9vRp'YD [eXD-- 1] T - _'p(1 -w)wfIT 2 [A.16].

To get an expression for Ks(T,p ) along the Hugoniot, we follow McQueen et al.

(1967) in equating an infinitesimal change in specific internal energy (SIE) along

the Hugoniot with one along an equilibrium thermodynamic path, as follows.

From the first law of equilibrium thermodynamics, we may write, at a given

density Pr, the relation

S
e(S,Pr) -- e(Sr,Pr) J¢- T(s*,Pr)ds*

where e(s,p) is the SIE and s is the specific entropy.

shock-compressed state is one of thermodynamic

flr'--P_v Sr--Sa, and write

[A.17],

Since we have assumed the

equilibrium, we may set

fSde(s,pH) = de(swp_) + d T(s*,pH)ds" }
sH

[A.18],
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O

giving us an expression relating an infinitesimal change in SIE along the

Hugoniot, de(sH, pa), in terms of one at the same density but at another specific

entropy. From [4.1] in the text, we have another expression for de(swp_), i.e.,

Substituting this into [A.18], we have

Tds + -_dp.p. _-- _1 [p.+Pi]dp. + _p rl.dpH" + d{_ST(s*,pn)ds *} [A.20].

Now assuming s--s(P,p)(i.e., e=e(P,p)), we have

Tds--- l--_-dP- Ksdp

p_ p2_/

Putting this into [A.20] and rearranging, we obtain

1

dr/n

[A.21].

- "y_o_ a--_--Z--{J ST(s*,pa)ds *} [A.22],
aPH sN

where _ -- %(swpH). Letting P_Pa and s--*s H, we obtain the desired expression

+1
drl. 7 "%[PH-Pi] [A.231.

In the text, we further a_ume _H--_/m, i.e., that _/ is a function of density

alone.
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A.3. Relations Between Isentropic and Hugoniot Properties

The purpose of this part of Appendix A is to detail some relations used in

the text to relate Hugoniot information to the isentropic properties of low- and

high-pressure phases referenced to the same initial state (i.e., T i and Pi in the

text). Among other things, we derive an isentropic equation of state for high-

pressure phase of the material based solely on the U-v relation for this phase, as

mentioned in the text. First, we outline a number of established relations based

on the balance relations for mass and momentum across the shock front and a

relationship between the shock-wave propagation velocity and material velocity

(i. e., U-v) relation, and then we show how to use these to find various isentropic

properties of high-pressure phases described by the U-v relation.

Assuming the material responds adiabatically as a fluid in hydrostatic

equilibrium to shock compression, the balance relations for mass and momen-

tum across a shock front separating a material into two adiabatic, homogeneous

fluids in hydrostatic equilibrium are, respectively (see the Introduction to this

thesis, [I.30] and [I.50]),

P_UH -- P_Ui [A.241

and

[[PI]= p['Ui[lvl] [A.251,

where [[PI]_P_-P_ is the jump in pressure, and [[vl]_v_-vi the jump in material

velocity, across the shock front; Pi and v i are then the pressure in and the veloc-

ity of the material ahead of the shock front. Also, Ur_u-v M is the speed of pro-

pagation of the shock front with respect to the shocked material, Ui_u-v i is

that with respect to the unshocked material, and u is the speed of displacement

of the shock front (i.e., the "intrinsic" velocity of the shock front). Equations

[A.241 and [A.25] relate 3 unknown, i.e. u, vw PH and pw assuming the initial

conditions vi, Pi and p[' are known. However, since U.-- vi-[Ivll, we can reduce
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this number to 3 (Ui, P. and p_) by making the constitutive assumption that U i

may be written as a function of [[vl] in a Taylor's series about v i. To second

order, this is

u__ _ + b_[Ivl]+ c_[Ivl]=+ O([Ivl]a) [A.26]

with

a,- nm/v,} [A.27][Ivl]-ot

and

[ dU i /
b i _ lira _IMj-.o d[Ivl]J [A.2S]

I _ d_Ui } [A.29],c i --'-- -- lira [2 IM]--,od[M]2

giving us 3 equations, [A.24], [A.25] and [A.26], relating 3 unknowns, [Iv[I, p.

and P_r Note that a i and b i are usually positive, while c i is usually negative.

as defined in the text, we mayUsing the relative compression, _ln---1-p_/pH,

write [A.24] as

[lull - r/.Ui

Putting this into [A.25], we have either

1

ui2= _[IPI]

[A.30].

[A.31]

or

[Ivl]2-- p_-_"[IPI] [A.32],

depending on whether or not we eliminate [Ivl]or Ui, respectively. From [A.25]

and [A.30], we obtain a relation for U i in terms of ai, bi, c i and r/s, i.e.,
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0

$

0

0

ci2r/_Ui 4 - [(1-bit/u) 2- 2aicir/_]Ui 2 + ai 2 = 0 [A.33].

As shown by Prieto and Renero (1970), for birlH(< 1, [.4..33] has the solution

Ui 2 -- ai 2

[(l_bi_?_2_2aici_7_] [A.34].

Putting this into [A.31], we obtain

P_ai2_H

[[PI] "- [A.35]
(1-bir/u)2-2aicir/u =

which we may rearrange for r/u([[PI]), i.e.,

L

_'i {,-[(/,2-1)+2aici_} [A.381
r/x _-- (bi2_2aici)

Note that ci, when resolvable by experimental data, is usually negative (e.g.,

Pastine and Piacesi, 1066; Ruoff, 1967; Prieto and Renero, 1970; Brown and

McQueen, 1982). In this case, we see that Pn(ci---0)---*oo as bir/H--*l , but

Pu(ci<0)-_piai2bi/ci in this same limit (Prieto and Renero, 1970). Clearly, c i

cannot equal zero for physically-reasonable asymptotic behavior. However, if

[ci[ <<bi2/4ai (Prieto and Rener0, 1970), setting ci=0 for bir/u<<l is at least

mathematically valid. If we do this, [A.35] reduces to the so-called shock-wave

"equation-of-state" (McQueen et al., 1967). For e and/or other high-pressure

phases of Fe, for example, [ c i [ should be less than 1.6X10 4 s/m (using the

appropriate parameters in Table 1) by implication of the apparent accuracy of

the linear fit to the U-v data (Brown and McQueen, 1086).

Following Pastine and Piacesi (1966), we may substitute [A.31] into [A.26]

and obtain

hi= lira [A.37].

Since the limits PH--*P_' rl.---*0 and [[P[]-+0 are formally and physically

Q
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equivalent to [Ivl]-+0, [A.33] becomes

0

ai = -_ [A.3s],

an indeterminate form. However, since both [[PI] and rl_ are analytic functions

of OH or PH via [A.35] and by definition, respectively, we may use L'Hopital's rule

to evaluate [A.37], i.e.,

a i _ lim ,.}2 ]dPH
[A.39]

or

with

K._=,HIdI,P,,}d,.=_1-_1_}_
In a similar fashion, we find an expression for bi, i.e.,

with

Lastly, for ci, we obtain

with

[A.40]

[A.41],

1{c i--- _ 2bi(2-bi)
12a i

1 [A.43].

+ Pw-*pt_lim [KrrK _' ]} [A.44],

dK H d'_P.__.}= 1•_.(1-r/.) [ ]-

1 lim [1 + Kr_] [A.42],
b i _--- _'pw..,pi_
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0

0

and

d_KH I
[A.45]

dzPa I
KHK _' = _--_(1-_/s)3 [ d_H3 1- (K_ +2)(K_ +3) [A.40].

Since the initial ([[v[]--*0) slope and curvature of the shock-compression locus

are equal to those of the isentrope referenced to the same initial state (Bethe,

1942), we have

lira [K.] = K_ [A.47]
P_r_pg

and

lira [K_ ] -----K_'

I!

And from [4.10] in the text, we may relate KH

[A.48].

lim [K_' ] = K_Kr_' ' [A.49].
plc--*pr

K .,,In these relations, K_ a, K_ _ and s_ are the isentropic bulk modulus, and its

first and second pressure derivatives at constant entropy, si--s(Ti,Pi), of the

low-pressure phase, a.

Experimental U-v relations applicable to high-pressure phases of a material

are usually centered at the initial density of the low-pressure phase, p_. To

recenter this U-v relation to the appropriate phase, 8, and obtain estimates of

certain properties of _ referenced to Pi_-P¢, we calculate new values of ai, b i and

c i (which represent the experimentally constrained U-v relation for the _-phase,

centered at p_), i.e., ai* , bi* and ci*. These values of the U-v coefficients, cen-

tered at Pi, then represent a so-called "metastable" U-v relation equivalent to

that obtained by McQueen et al. (1967). To calculate ai* , bi* and ci* from

Q
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p_, ai, bi, c i and Pi, we first note that the pressure and density of the _-shock

state are related by [A.26] if ai, b i and c i in [A.26], result from a fit to data from

that part of the U-v plane representing/?.

have, for the metastable U-v relation

and

Instead of [A.28] and [A.29], we now

[Ui*]2= Pi"H[IPI] [A.50]

[Iv*l]2= Y'_--_[IPI] [A.51],
Pi

where [[P]] is still given by [Ao26]..WA!t,h these, the p-,_,,-o t,_ n,,_ ovpression s

for ai* , bi* and ci* is exactly analogous to that just followed in obtaining [A.30],

[A.32] and [A.34] for ai, b i and % respectively. All we do is replace U i with Ui* ,

[]vii with []v*]], p_' with Pi, ai with ai* , b i with bi* , and c i with ci* , except in

[A.26], because it gives [[PI] and p. for /_, referenced to p[', as stated above.

Consequently,

[A.52]KH / 1/2 Ks,} _

. 1 1-[1 + '1 [A.53]b i = [1 + [K_ ]_r=p,] -- _ K_

and

, 1{ }¢, ffi -- 2b:(2 - b}) + [K_K_']_p,
12ai*

1 { 2hi* [2-bi*+"/(pi)] -{- Uslis_ ' } [A.54].
12ai*

From this, we see that if ci_0 , then

I_K_' --_"_[K_,-7-4_(pi) ] [A.551
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and this is the case for most materials from the experimental-resolution point-

of-view. Assuming that ci---_0, [A.35], [A.41], [A.49] and [A.51] provide

1 + bini) }1/2ai* = (l-rli) (1 - birh) 3 ai
[A.56],

and from[A.351,[A.43],[A.50],[A.511and [A.531,

1 [4(1 - rli)bi + (2- rh)bi2rh- 1]

v{1+ } IA 0J

where rli_l-p'_/pi . Note that, from these relations, ai*---,a i and bi*--*b i as

PH"*P_, i.e., as rti--*0. In principle, [A.40], [A.42] and [A.44] may be used as con-

sistency relations between Hugoniot data and other types of compression data

for appropriate materials, materials. Note that we need Pi_P¢ to obtain ai*

and bi* from this method. If we know this density sufficiently well, we also gain

!

estimates of K_ and K_ of the high-pressure phase, as well as ai* and bi*. In

this paper, for example, we use [A.45]-[A.46] to estimate the isentropie proper-

ties of liquid-Fe referenced to STP given in Table 4.1.

§10. Appendix B: Isentropic Release and Reshock

Considering the shock-compressed material as a thermodynamic "system,"

and the "lab" as its "surroundings," a balance of energy implies that any

infinitesimal change in the specific internal energy of the system, de(fiq,_w), is

due to the difference between the net amount of heat transported into the sys-

tem from the surroundings, _q, and the net amount of work done by the system

on its surroundings, &v. If we assume the material to be internally in thermo-

dynamic equilibrium, then de _ Tds- Pdv and any infinitesimal change in

specific entropy of the system is given by

ds -- --_ _q - [_w - Pdv ] IS.l].
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Adopting the idea that heat transport in or out of the target is insignificant on

the time scale of release, we assume that the release path is adiabatic (_q_-_0).

Further, we assume that the mechanical work done by the system during release

is entirely reversible (_w _-Pdv). In this case, the release path is both

isentropic and adiabatic.

B.1. Phase Transition during Release

If a phase transition occurs during release, the constraint of isentropic

release in turn places constraints on the phase transition. Consider a first-order

transition from the shock-compressed phase _ to a release phase 7r. In this case,

the total specific internal energy, e, total specific entropy, s, and total specific

volume, v, of the two-phase system may be written in the form

_b = (1 - X)¢ _ + X¢ _ [8.2],

where X is the mass fraction of r, and ¢ -- {e,s,v}. As with a single-component

system, an infinitesimal change in specific internal energy of the two-phase sys-

tem, de, is balanced by the net heat flow into the system from the surroundings,

6q, minus the net work done by the system on its surroundings, &w. Assuming

that each phase is internally in thermodynamic equilibrium (i.e., temperature,

pressure and composition are homogeneous within the phase), an infinitesimal

change in total specific entropy of the two-phase, single-component system is,

from [B.1] and [8.2],

TZds

where

O_ir _ O_W - Pfld[(1 - X)v_ - P*d[xv *]

is the nonrecoverable work done by the system on the surroundings, and g is
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the specific Gibbs free energy. The second term on the right-hand side of [B.3]

is the entropy produced by heat flow between phases, while the third term is

that produced by mass exchange between phases. A sufficient, but not neces-

sary, set of conditions for isentropic (ds_0) release through the mixed-phase

region is then, on the basis of [B.3], (1) adiabatic release (_q=0), (2) mechanical

equilibrium (P_--P_) in the system plus reversible (Pdv) work on the surround-

ings (p--pB=p_), (3)internal thermal (T_=T _) and (4) chemical (g_----g_)

equilibrium. Conversely, if these conditions prevail, release through the mixed-

phase region will be isentropic. Clearly, even if releaseis isentropic through the

mixed-phase region, it is no guarantee that the phase transition will occur in

thermodynamic (i.e., thermal, mechanical and chemical) equilibrium.

We chooseto satisfy the constraint of isentropic release by assuming the

conditions discussedabove consistent with this, i.e., 1) release is adiabatic, 2) all

work is recoverable and 3) the phase transition occurs in thermodynamic equili-

brium. On this basis, we need an expression for the change in pressure and

temperature across an isentropic phase transition. With s--s(P,T) for each

phase, an infinitesimal change of s in the mixed-phase region is, from [B.2] with

¢---S_

ds = [c_ + xA%ldlnT-[a_v z + XA(c_v )]dP + As dx [B.4],

where % is the specific heat at constant pressure, v is the specific volume, a is

the thermal expansion, and A¢ _ ¢_- 4;_ is the jump of any quantity ¢ across

the mixed-phase region. For an isentrope through the mixed-phase region,

ds--_-0. Putting this condition into [B.4], and noting that pressure and tem-

perature do not vary independently along the equilibrium phase boundary, i.e.,

/kv dP _/ks dT_, we have

{(c_ + X/Xcp)Av -[a_v _ + X/k(av )]T_(P)As}dP

+ /ks T,_(P)/ks dx -- 0 [B.5],

Q



- 131-

O

Now we show that this relation for an isentropic path through the mixed-phase

region is separable, and so an exact differential. Let

rI(P,x) ---- (c_ + xa%)av - Tm[a_v # + X/X(av )]/ks [B.6]

and

Then [B.5] becomes

X(P) _-_ As Tm AS

rI(P,×) dP + X(P) d× -- 0

From lB.6] and [B.7], we have

rlx(P,x) ---- {_x }

and

-- Acp Av - Tm A(av) As

Xp(P)---_{ dX--c_--} --- As { dTm 2AsT_{ dAs--_-} As + --_}.

= {Av +2TpB{-_} } As

[B.7].

[B.S]

[8.9].
PB

Note that both of these partial derivatives are functions only of pressure along

the phase boundary. Since at any point along the phase boundary, P# _ P_,

we have

dAs } Ace Av A(av) [B.10].

Putting this into lB.9], we have

xp(P)= lay - 2T_ A(_v)]Z_s+ 2AcpA,

The condition for [B.5] to be an exact differential is Xp -- 1-Ix.

[BAll.

Since, from [B.8]

and [B.11], this is clearly not true, lB.51 is not an exact differential equation, in
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its current form.

ing

However, we may attempt to put it into such a form by solv-

_uH(P,x)dP + _X(P)dx = 0 [B.12],

Putting these into the exactness criterion, wewhere _ is the integrating factor.

require

[/_H] x = [tJX]p lB.131.

Since we already know H(P,x) and X(P), we solve lB.12] for U, i.e.,

_,T L l J.L L $11T

iNobe bllab _11 X

nux - Xup + (rIx - x_)u = 0

-Xp) is a function of P only. in this ease, we set t_x

solve

to obtain the integrating factor

(nx - xp)
Up-- X U [B.15]

}Av {1-I- }}dP* [B.16].TIn(P*)ju(P) =--- exp _s

With u(P), [B.51 in the form [B.12] is now exact.

[B.5] as follows. We define

@p(P,x)--/_(P) I-I(P,x)

@x(P,x) "- u(P) X(P)

and

On this basis, we may solve

[B.17]

[B.18].

Integrating [B.17] with respect to pressure at constant composition, we obtain

@(P,x)= fPu(P*)rI(P*,x)dP"+ g(x) [B.19],
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where g(x) is at most an arbitrary function of composition. Putting this into

[B.18], we have

@x(P)- tt(P)X(P)--fPt,(P')nx(P*,x)dP* + gx(x) [B.20].

Solving this for gx(x) , we find

P , , $

gx(X) = _u(P)X(P) - f /J(P )YIx(P ,x)dP [B.21].

Even though it appears that g(x) is a function of pressure, it cannot be, by its

definition, [B.20]. Further, since

rlx(P,x ) -- A%Av - TmA(av )As [B.22]

is actually not a function of X, we have

g(x) _ Xgx(X) [B.23],

and so

@(P,x) = Xtt(P)X(P) + fP_(P*){II(P*,x)- x IIx(P')}dP* [B.241

with

H - H x = c_Av - Tr_#v _As

Putting [B.25] into [B.24], we obtain

@(P,x) -- X/_(P) X(P) + fP_(P')Icfl Av - Tn3(P')aflvflAsldP"

[B.251.

Note that _(P,x) is equal to some constant since

_xdX + _pdP -- 0 [B.27]



134 -

by definition, []3.12] above. Relation [B.26] is subject to the following boundary

condition:

• (Pg,x -- o)-- ffgu(P)[c¢Z v - T_(P)aZvflAsldP * -- constant [B.28].

Using this condition, we have the solution to lB.5] for X as a function of pres-

sure along the phase boundary, i.e.

x(P) = As#(Pr_)Av /_(P*)ITr_(P*)aZv_As - c_Av ] dP*

in [B.29], P_ is the pressure at which the release path of fl intersects the _r-/?

phase boundary, i.e., where X -" 0. In the models, we evaluate [I3.29] numeri-

cally along the phase boundary, Tes(P), until 1) X _ 1 (complete transforma-

tion) or 2) Tr_-- Tr_P_) (partial transformation). In the former case, the new

phase then releases to PR along a path beginning at the pressure and tempera-

ture on the phase boundary where X -- 1.

B.2. Complete Release and Reshock

Since the free surface of the completely released material has not been

shocked, an impedance match between 1) the unshocked material, which

impacts the next target material at the free-surface velocity achieved upon com-

plete release (see text), and 2) the next target material provides us with the

pressure of the DP or FL reshocked state, Pro. This reshocked state quickly

relaxes via reverberations to a state with the same normal components of stress

and material velocity as the shock-compressed state of the next target com-

ponent. We assume that this occurs isentropically.

The complete release process brings the material to a low-pressure state

with a lower density and higher temperature than the density and temperature
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of the unshocked starting material. From this point of view, assuming all states

achieve thermodynamic equilibrium, we may use an energy balance in the

pressure-density plane, such as that used in the obtaining the expressions for TH

in the text (e.g., [4.46]), to connect the reshocked state with a state along the

principal Hugoniot of the reshocked-state phase having the same density as the

reshocked phase. Referring to Figure B.1, assume the shocked material experi-

ences complete release to a pressure Pi, an absolute temperature TR, and a phase

zr in thermodynamic equilibrium possessing a mass density P_---_P_(TR,Pi), specific

entropy SR_ _-- s_(Ta,Pi), and specific internal energy eR_--e(s_,p_) (point A, Fig-

ure B.1). Further, assume this material is immediately "reshocked" to a pres-

sure PRs, temperature TRs, and phase _ in thermodynamic equilibrium having a

mass density p_-_ p6(TRs,PRs), specific entropy s_ _ s6(TRs,PRs), and specific

internal energy e_-----_e(s_,pm 6) (point E, Figure B.1). Also, assume that the

material deforms as a fluid. In this case, we may connect the complete release

(point A, Figure B.1) and reshocked (point E, Figure B.1) states by the Rankine

Hugoniot relation, /. e.,

with

1

= + Pi] lB.30]

being the relative compression of the material along the reshock path. In the

text, we used the concept of an equivalent thermodynamic path to connect the

initial and shock-compressed states of a material, occupying different phases of

that material. Applying this to the present case, we may connect states A and

E in Figure B.1 via a path A_B--*C--*D_E using a known reference Hugoniot,

which ideally would be the "principal" (i.e., referenced to STP) Hugoniot of 6.

Assume that the reference Hugoniot begins at a density pi _ p(Ti,Pi),
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Figure B.I Diagram depicting release-reshock calculation.
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represented by point B in Figure B.1.

then represented by

e_ - ear --'- e(sf,Pi 6) - e(s#,Pn r)

+ e(sLpa)- e(_Lpi6)

+ e(s_,p_) - e(si6,p_)

= 2p-_,_[P_ + P,l

The reshock path between A and E is

(A->B)

(S->C)

(C->E)

(A->E)

[13.31]

from [B.30]. Unless otherwise noted, all quantities apply to _ in the rest of this

section. Since part of the path represented by [B.31], i.e., B--+D, is the

equivalent equilibrium thermodynamic path for shock compression of the

material from pi 6 to pm6, we have

e(su, pm)- e(si,Pi) --" e(si,Pm)- e(si,Pi) (B->C)

+ e(sH, pm)- e(si,Pm) (C- > D)

(B->D)

[B.32]

with

rba _- 1 - Pi/ Pm

and

Piai2_'/H
P.----Pi +

(1-a_n.)_

from [4.15] in the text. Substituting [I3.321 into []3.311, we have

2p_r/Rs[Pm + Pi] -_- e(si,Pi)- e(sa_'p:)
(A->B)
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+ 2--_'7_[PH+ P_]

+ e(_,_,p,_)-e(_p,_)

(B->D)

(D->E)

[B.33].

Assuming, as before, that 7, the equilibrium thermodynamic Gr_neisen's param-

eter, is a function of density alone, [16] from the text allows us to write, for the

path from D--*E, the relation

with _Rs-- "_(pRs).

with

e(sm,p,s) - e(s_pm) = 1 {pm _ PH} [B.34]
Pm_Rs

Substituting [B.33] into [A1.32] and rearranging, we obtain

1

Tm'PRs = (1-¢)TxPH + "2"¢"fi_'Pi J¢" P_Aea_ [B.35]

¢ --_ 1 - P:/Pi

and

Z_e_- [e(si,p3- e(_*,pR_)]•

Requiring Pm"*Pi as pm....p_, we obtain from [B.35]

1
Pi -- (1 - ¢)[THP,] _ = a_ + _"_ CPi + p_ff:Ae_

Rearranging [B.36], we have

Ae_ -'- l { (1-2 ff_¢)Pi - (1-¢)[TmPH]p_s= p_ }

[B.36].

[B.37],
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giving us an expression for the difference in energy between the complete release

and reference states. If Pi _ 0, then

AeiR = -----_1 (1-¢)[T_P.].Rs__.,.

With these relations, we obtain a meta_table U-v relation (Appendix A), which

allows us to calculate the density of the reshocked state from the pressure, and

with both of these, we we calculate the temperature via the appropriate expres-

sion in the text.

§11. Appendix C: Energy Transport Model

In this appendix, we 1) derive conditions under which radiation and/or con-

duction may be an important means of energy transport in the shock-

compressed or released states of the target components, and 2) establish energy

balance relations for the target components to be used in Appendix IV and the

text. We attempt 1) via a dimensional analysis of the local energy balance in a

radiating, conducting target represented as a rectangular Cartesian continuum

with material properties assumed to be isotropic and homogeneous in the refer-

ence (deformed) state. In constructing this energy balance, we assume that the

radiant energy density and radiation stresses are negligible in comparison with

the corresponding thermomechanical quantities. We also assume an equilibrium

caloric constitutive relation for the specific internal energy of the relevant

deformed state of each target component. With the deformed state as the refer-

ence state, then, we may assume, for example, that the components of the heat

flux qi are given by the classic Fourier relation in an isotropic medium

qi _. _k6iY T,y [C.1],

where k is the thermal conductivity. Under these circumstances, the local bal-

ance of energy around the (deformed) reference state It is represented by
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p, Cpa 0tT(x/,t)= kRTii(xi,t)- hii(xi,t) + r(xi,t) [C.2].

In this relation, T is the absolute temperature, h i are the components of the

radiant energy flux, and we have combined terms for the specific internal energy

supply and mechanical dissipation rates to form r(x i ,t). Also, PR, Cp_ and k R are

the density, specific heat at constant pressure and thermal conductivity of the

reference state, R. Note that, in [C.2], time is judged relative to the beginning

of the reference state, 0t-_=0/cgt, and ¢,i denotes partial differentiation of any

field quantity ¢(x i ,t) with respect to x i , the coordinates of the reference

configuration R. Of the terms in [C.2], neither hi i, the divergence of the radia-

tive flux, nor r, the specific internal energy production rate, is specified. To find

an expression for hi, i, we first need to discuss radiative transport in the target.

All radiative transport models discussed in this paper are founded in

geometric optics and the classical equation of transport ([C.3] below), both of

which assume an optically isotropic propagation medium (i.e., one with a uni-

form index of refraction). The form of this equation used in this appendix

presumes that 1) all processes affecting the observed radiation intensity (scatter-

ing, absorption, etc.) are independent of the intensity of the sources and 2) any

scattering is elastic and isotropic. Under these conditions, the change in the

quasi-static spectral intensity, ix' (si), at a point P(xi ) in the direction-_ is

given by (e.g., Siegel & Howell, 1981, Eq. 14-4)

This is the radiant energy transport at a point P(x] ) per unit time, per unit

projected surface area normal to 7, per unit wavelength interval dk about a sin-

gle wavelength k, per unit solid angle in a single direction-_. Note that the sub-

I

script k denotes a spectral quantity, i x is quasi-static because we assume it is

not explicitly dependent on time, but only implicitly so through temperature,
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etc.. In [C.3], c31_cg/OsJ , a x -- ax(X,T,P ) and a x = ax(X,T,P ) are the spectral

' " ' (X,T) is theabsorption and scattering coefficients, respectively, and ixe _ 1),e

spectral emission intensity, all along-_. The first term on the right-hand side of

[C.3] is the loss of intensity by absorption (including the negative contribution

from induced emission), the second is the gain by all emission processes except

induced emission, the third is the loss of intensity by scattering, and the last is

the intensity gained by scattering into the-_ direction from the solid angle w.

Note that we assume, in writing [C.3], that the wavelength of the radiation is

not changed as a result of these processes. If we integrate [C.3] over all solid

angles and wavelengths, assuming any scattering to be isotropic, we obtain h i •

at a point P(xJ), i.e.,

h i-,, -- 41r f0 _a×(k*)[ixe' (k*) - "/'x(k*)]dX* [c.4]

(e.g., Siegel & Howell, 1981). In this relation, the first term represents the rate

of emission of radiation per unit volume in all directions, while the second,

given by

f . !T×(),) _ 'x (X,w*)dw*,
_4_r

is the radiation intensity scattered from all directions into P at wavelength k.

In principle, we could substitute [C.4] into [C.2] and try to solve the resulting

nonlinear integrodifferential equation for the temperature field in the medium of

interest. However, here we want only to establish the magnitude of hii relative

to other terms in the energy balance, [C.2].

To judge the relative magnitude of the terms constituting [C.2], we render

them nondimensional (ND) by the following transformation

{x i , t, T, h i , r) --* {xa_ i , tRr , Wa + ATRO , hRh; , rRr } [C.5].
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In this transformation, O and T s are the ND and reference (e.g., Hugoniot or

release state) temperatures of the material, while AT s is the difference between

T s and some "maximum" possible temperature such that O.._O(1). For exam-

ple, if T R is the release-state temperature, AT R represents the difference between

it and the reshocked-state temperature at the same pressure (see text). Substi-

tuting [C.5] into [C.2], we obtain

_grO - P%-10,ii

In this expression,

+ Bo_clhi,i = Daae

is the Pecl6t number, tca_--k_/paCp_ a is the thermal diffusivity,

BoR_ Pacp_A TI_
hats

is the Boltzmann number, and

[c.6].

Da_-_ rRtR
PR%_ATR

is the Damk_hler number, of state R. Pea, Bo a and Da_ are, respectively, the

ratios of 1) free enthalpy flux to conductive flux, 2) free enthalpy flux to radia-

tive flux, and 3) generalized internal energy supply rate to free enthalpy flux.

We are particularly interested in Pe a and Boa, since their respective magnitudes

will control the relative contributions of conduction and radiation to the energy

transfer in the interior (away from the boundaries) of any layer of the target

model. To obtain the magnitude of Boa, we first require an expression for ha,

which may be obtained from [C.4]. First, we assume ixe' (),) is given by

i), e' (k)= ixpl(nx,),,T ) [C.71,

where ixpi(k,T ) is the Planck function and n x is the index of refraction of the

medium around P. Then, defining 1), the Planck mean absorption coefficient
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(e.g., Siegel & Howell, 1981)

fo°°ax(>,,T,P)ixpl(nx,k,T)dk

<a>pl(T,P )

fo 0- !
l×e (k)dk

and 2), the incident mean absorption coefficient

[c.8]

<a>in(T,P )

fo °°ax(k,T,P)A(k)d>,

fo °°T×(k)dk

It.o]

where

f0 °
2"_ Tx(k)dk,

and noting that, if n x is independent of >,,

f000° I
lXe (k)dk = n2amT 4 ,

(where am_-5.B696X 10-SW/m2-K 4 is the Stefan-Boltzmann constant), we may

put [C.4] in the form

h i.,, -- 47r[ <a>pi n2a_T 4 - <a>in T] [C.10].

Nondimensionalizing [C.10] with the appropriate transformations in [C.5] plus

$---_$R$, we have

h i . ha
,, -" -- [ <a>pl [1 + ¢RO] 4- <a>in 7"] [C.11],

x R
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0

0

where _'R_nR 2 a m T 4,

and Ca = ATR/TR-

h R -------4wxRaRnR2amT 4

Substituting h a into the Boltzmann number, we obtain

Pacr_ATR

Bo. = 4_raxtRn_amW 4

From [C.6] and [C.12], we see that radiative transfer will be

means of energy transfer in an optically thick (BOR(aR---_C_)---*0)

[C.12].

an important

and/or high-

temperature medium, but not in an optically thin (BoR(aa--*0)--*c_) medium, all

other parameters being finite.

At a boundary between two target components, we have a slightly different

energy balance to consider. If we assume that the boundary is material and

does not contribute to the balance of energy across it, the local balance of

energy across the boundary between layers I and J takes the form

[q[ + h/l vi -- [qj + h]l -i [C.131,

where u i is the "outward" normal unit vector to the interface. Using [C.1] and

the definition of h R given above, this takes on the ND form

O,,ivi - k_AT_ Oj, ivi =Skt_.l {h_vi - ajn_T_22 h_/vi}
ktA Ti a,n, T t

[C.14],

where SkQ is the Stark number of layer Q, given by (see text)

koAWo [C.15],SkQ _- 2 2 4
4_raQxQ n e amT _

which is a measure of conductive to radiative flux across a layer xQ thick with

effective temperature gradient ATJxQ. Estimates of the parameters in these

relations for the high-pressure states of the metallic DP, FL and dielectric SW

are given in the following table:

O
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Table C.1. Order-of-magnitude shock compressed/released-state parameters.

Parameter metal dielectric SI units

PR 104 103 kg/m3

Cp_ 103 103 J/kg-K

kRt l0 s 101 W/m-K

T R 104 10 z K

AT R 10 3 10 3 K

n R 1 1

art > 108 I0 m -1

Xexp < l0 s 10 _ m

tex p 10 -7 10 -7 s

Pe a < 1 < 108

Bo a 10 < 109

Skr_ 10 10 3

- STP values.

The quantities PR, %_, TR, ATR, texp and n a are relatively well-known (i.e., to

within a factor of 2) through the impedance match and equilibrium thermo-

dynamic shock compression/release calculations discussed in the text. Most

uncertain of all material parameters constituting Bo a and Pea, and so

Sk a -_ Boa/Pea, are the thermal conductivity, ka, and the absorption coefficient,

at,, of the high-pressure state of each layer. For perfect crystalline nonmetals,

k _-. l/T, while for metals, k _-. constant at high temperature, respectively
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(e.g., Berman, 1976; for minerals, see Roufosse & Klemens, 1974), implying that

the values of kn in Table C.1 are upper bounds if these dependences are rela-

tively insensitive to pressure. If we assume that k for metals is dominated by

its electronic component, ke, we can use the W]edemann-Franz-Lorenz (WFL)

relation ([5.7] in text) to estimate k from electrical resistance data, or some

re, ...... ..-,,., ._,,_.,, r...,,..av _.o.vo, o,l_ AVX_-t/lV_A.y _5>t145V. DIIU_III_tU _.L_PO_]

investigated the change in electrical resistance of many statically-compressed

materials, including iron, but only at low pressure (_10 GPa). Keeler (1971)

investigated the change in the electrical resistance of shock-compressed copper

and iron up to 140 GPa. He found that Pe of shock-compressed Cu decreased

from _ 16.7 to 5.6 nfZ'm with pressure up to _ 100 GPa; a datum at 140 GPa

implies that the resistivity of Cu reaches a minimum between 100 and 140 GPa

and then increases to _ 0.83 nfZ'm at 140 GPa. As for Fe, the data imply that

its electrical resistivity decreases from _-- 2.5 to 0.47 nfZ'm between 13 and 140

GPa (above the a---+e transition). In light of [5.7], these trends imply that the

thermal conductivities of shock-compressed Cu and Fe increase with shock pres-

sure, against the high-temperature expectation expressed above. Consequently,

we may assume with some basis that the STP value of k provides a lower

bound to the high P,T value of the metallic target components, k R.

The thermal conductivity of dielectric target components is dominated by

the lattice contribution, kp, at high pressure, we may estimate k from the lattice

thermal-conductivity model of Roufosse & Klemens (1974), who argue that the

acoustic branches of the phonon-spectrum dominate kp. Using this assumption,

they arrive at an expression for kp, i.e.,

1,21 !+_I T [car]
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with

n2/3 Msv _

T 1 _--- 21/8137r2]s/3 ks-_ 2

and

B' 1 M a v_

21/632/zTrT/z a2nl/3 -_ '

where n is the number of atoms in the unit cell, M a is the atomic mass, v¢ is the

velocity of sound, k B is Boltzmann's constant, and a 3 is the atomic volume, and

-yp is the acoustic-phonon Grllneisen's parameter. This relation is consistent

with the k _ 1/T expectation at low pressure. However, if the effect of pressure

is to increase k, then k may change little from its STP value. Arguments in

favor of this are given by, e.g., Roufosse & Jeanloz (1983), who find that various

two-body interatomic force models appropriate for halides predict an increase in

kp with density and a decrease across polymorphic phase transitions with an

increase in coordination. We use [C.16], [C.17], the solid-state thermostatic

model presented in Appendix A, and the equilibrium shock-compression rela-

tions presented in the text to estimate high P,T values of k e for metals and kp

for dielectrics in our targets. These calculations, discussed in the text, are con-

sistent with assuming the STP value of k for metals and nonmetals is a lower

bound to the high P,T values of k for these materials.

As for the absorption coefficient, we expect the STP values given in Table

C.1, like those for k, to be lower bounds, since absorption in the optical band is

most likely to increase with pressure and temperature (e.g., Siegel & Howell,

1981). Only a few initially transparent materials, such as A120 3 (Bass et al.,

1987), retain their original transparency upon shock compression to high pres-

sure (..__ 250 GPa).
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O

Q

Note that the following comments for the FL apply to the DP as well.

From Table C.1 values, we expect B%_107/aF and Bow_101°/aw for the FL

and SW, respectively. Since we have no upper bounds on _ and a_ we cannot

really say that radiation will never be important within the FL and SW, but it

seems unlikely. What we can say is that if a_10 7 m -1 and a_<___101° m -1, radi-

ative transport should not contribute significantly to the energy balance within

the FL and SW (shocked window), respectively, on the time scale of the experi-

ments. Note that this bound for a_ is probably underestimated, since we have

assumed a rather large value for T R in the DP or FL (Table C.1). As for con-

Pe in12,, 2duction, we have, from Table C.I, P%,._<1012x_ and w_-" _w, and this

implies that conduction will be significant over a length scale of _10-5m in the

DP, FL and/or SW. On this basis, it is likely that conduction will contribute to

the energy balance in both the FL and SW on the time scale of the experiment

over a length scale equal to the thickness of the FL, since we expect k_ and

especially kF, to increase with pressure and temperature (i.e., during shock

compression). From all this, we believe that the values of Boa and Pe a given in

Table C.1 are upper bounds to all relevant values of these parameters at higher

pressures and temperatures. In order to emphasize the uncertainty of kR, a_ and

the governing length scales, xp and x_ of the FL and SW, respectively, we write

[C.6] for the DP, FL and SW, and [C.13] for the interface, using the values for

the better constrained parameters from Table C.1, in the following forms (with

I--*FL and J--*SW):

and

_¢O_ - 10 -14kF OF,ii -k 10-Ta_ h_",i -- Da_ eF2
x F

OrOw - 10-13-_ Ow, ii -k 10-10a_v h / ,i - Daw ew,
X w

[C.18]

[C.19]

_. -- 10 6 arx_Op, i vi k"xr Ow, i v; + i vi
kvxw _ hF
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l0 s xvxwaw i i- [c.20].
k_

For a given layer to be, in effect, spatially infinite with respect to a given proc-

ess (i.e., the boundaries have no effect on the process), its length scale must be

at least an order-of-magnitude less than the layer thickness. The conductive

length scale is xR_==-__, while that for radiation is x_,_=aR-1. The STP

values of these length scales, given in Table C.1, when compared to x a of each

layer, imply that both the DP and SW are infinite with respect to conduction,

but that the SW is finite, while the DP is infinite, with respect to radiation.

This implies that any conduction in the DP and SW, and radiative transfer in

the DP, will be quite localized on the time scale of the experiments, but radia-

tion will pass essentially unhindered through the SW for am_xR-l_--_103m -1. In

this case, only the interface, shock front and USW free surface will significantly

affect the radiation intensity. We consider the effect on radiation of propaga-

tion across the interface, SW, shock front, USW and its free surface in Appen-

dix V. By the same reasoning, we conclude that any conduction effects on

energy transport affecting the observed radiation field will be confined to a

region near the FL-SW interface on the order of the FL thickness. On this

length scale, heterogeneous heating at the DP-FL interface and/or phase

changes between the DP-FL and FL-SW interfaces may also contribute to the

temperature field in the neighborhood of the FL-SW interface. In light of all

this, we assume that x F and x w are given by the corresponding values of x_ for

the DP and SW. Putting these into [C.18]-[C.19] and reducing them, we obtain

OrO F - 10-2k_, Oy, ii "k 10-Ta_ h¢',i -- Da F % [C.21],

OrOw- lO-Xkw Ow, ii -- Daw ew [C.22],

and

OF, iv i __ kwo,,, i vi +10_6 a_ i vi
k-_ k,, hF
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where we have eliminated the radiative terms for the SW in [C.22] and [C.23],

since a w would have to be on the order of 109 m -1 before radiative transfer is

important in the shocked (or unshocked) TW and across the FL-SW interface,

regardless of the value of x_ If aT is much larger (e.g., 108m -1) and k F much

smaller (e.g., 10) than their values given in Table C.1, radiative transfer could

influence energy transport in the DP, and across the FL-SW interface. How-

ever, for lack of better information, we adopt the values in Table C.1, thereby

assuming that the thermal conductivity of the DP, FL and SW, and the absorp-

tion coefficient of the DP and FL, are effectively unaffected by

compression/release. In this case, [C.21]-[C.22] become

and

OrO r - P%-IOF, ii -- Da_ ep, [C.24]

OrO_ - PewqOw, ii -- Da_ ew, [C.25]

eD, i vi = k_Twxr ew, i v i [C.26].
kp_TFxw

where {Pep, Pew}_l (with xp_xwl0 -°) and

kw_Twxr _0.1.

k_TFxw

In this case, radiative transfer does not contribute substantially to energy tran-

sport in any part of the DP-TW system. So, we are left to investigate the

effects of conduction at the interface through relations [C.24]-[C.26] in the next

section, and effects of radiative transport through the FL-SW interface, SW,

shock front, USW and and its free surface by way of a model based on [C.3], in

Appendix E.
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§12. Appendix D: Conductive Transport in the Target

The scaling arguments presented in Appendix C provide some idea of con-

ditions under which conduction and/or radiation may be an important means of

energy transport in the interior of each layer of the target, and across the boun-

daries between the layers. With some basis for believing that we are in the

range of conditions where conduction dominates radiation as a means of energy

transport, we decouple these processes and treat them separately. In this sec-

tion, we establish a simple conduction model for our target geometry. We

adopt the framework of Grover and Urtiew (1974), who assumed that 1)

significant conduction takes place only along the direction of shock-propagation

(i.e., is one-dimensional), and 2) shock-compression transfers energy to the

material much faster than it can be conducted away. This last assumption

allows us to treat the DP and TW as thermal half-spaces. Choosing the thick-

ness of the FL, d, as the governing length scale, we have, from [AIII.25] and

[AIII.26], the ND energy balance for the DP (-oo<f<-l), FL (-l<x<0)or

TW (0< f<oo):

e_f(f,r) - Pe A o0_e^(_,r)-- -ee^Da^eA(f,r ) , r>0 [D.1],

where A is the released DP or FL, or the shocked TW. We use the Laplace

transform (LT) technique (e.g., Carslaw and Jaeger, 1959) to solve [D.1] for each

layer. Applying this transform to [D.1], we obtain

2 0^= [D.2],

where $(f,s) is the LT of e(f,r), s is the LT variable, qA(s)-- Pv/'P_As, and

C^(_,s) ------PeA[DaAeA(f,s ) -I- e^(_,0)] [D.3],

which contains the ND initial conditions CA(f,0). The general solution of [D] is

given by

0^(¢,s)= b^(s)e ,e+ c^(s)e- e + 0,,(e,s) [D.4]
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with

being the particular solution of _D.2]. The boundary conditions include the

requirements that OD(e,r ) and OD(e,r ) and ew(e,r ) remain bounded as e---_-oc

and f--*+c(_, respectively. Consequently, we have

I'1 0

c D--- =.--J ec_¢D(f,s)df
Z% -oo

and

1 fO COe-q_;¢w(¢'s)d_'"bw----

Using these and writing [D.4] for each layer, we have

and

NOW 01_

0D(e,s) -- bDeq_ + 0_(e,s) , -oo < e < -1

0F(e,S)--" bzCs)e q_ + cv(s)e-q_ + 0_(e,s) , -i < e < 0

0dE,s)= c_e-_ + o_(¢,s) , o < e <

and 0wp are given by

0_(e,s) =-- -k% {f_¢ _eqdf-0¢D(_',s)d_" + f °eqd_-_')¢D(_,s)d_

[D.5]

[D.6]

[D._l.

[D.S]

and

_e-q_(6_)¢w(¢,s)d ¢ + f C_e-qw(_-GCw(¢,s)d¢
[D.9].
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0

Relations [D.5]-[D.7] contain 4 unknowns, bD, b r and cF, and c_ requiring us to

specify 4 more boundary conditions. We obtain these by assuming the usual

continuity of energy flux and temperature across each interface in the target. In

the transform domain, these are given by

-kD¢oae0o(-1,s)= -k,¢, 0gF(--1,S) [D.10]

1TD + CD O.(-l,s)= IT, + ¢, O,(-l,s)
S S

[D.11]

-k,¢, a_O,(O,s)= -kw,_,,,Ogw(O,s) [D.121

and

!T, + ¢, O_,(O,s) = iTw + Cw O_(O,s)
S S

[D.13].

Putting [D.BI-[D.g ] into [D .10I- [D .13 l, we obtain

oDFe-qD --e-_ e_ 0

e-XtD -e-°_ -e_ 0

0 1 -1 awp

0 1 1 -1

I

bo
I

bF

CF
!

CW,

bl

b2

ba

b4

[D.14]

with

°r_ _o

2% -leqdl + 0 CD(f,s)d f

_v f-Xeq_l + O CD(_',s)d _"b2 _ ATm- 2"_ --oo

fl av_¢w¢, O[eq_. + e_q_ ] ¢,(f,s)df + 2qwb3-- 2% _ -- fo °°e-qW_¢w(f's)df

b 4 --_ I--ATw_- --
S

Cv e 0 _w+
ZqF"_ 1

°°e-q_ Cw(f,s)df
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I !

and b D _-_ <I>vbD, b F _ _FbF, etc.. If the coefficient matrix is nonsingular, Le.,

D(s) -- -(1 + aw_)(1 ÷ acp){ e qr_ - ur_u_e-(qD + _)} _A 0

@

@

@

@

where

and

(a_-l) (a_-l)

the system [D.14] has a unique solution. Noting that

1 e qv'_
m

D(s) (1q-_)(1-i-Ow_)[l-v=FVw_e-2cw]

eCb oo

(i+a_)(l+o_) _ (Vm_VwF)me-<l_2m+l)
m_0

for -1 < vm4_,_e -2_ <_ 1, we invert the coefficient matrix in [D.141 to obtain

I
bv

I

bp
!

C_
!

Cw

1 O0

(1q-crx_)(1q-a_) _ (b'_wlz)m e-qF(2m+1)
m--0

[D.15]

X

al 1 a12 2eqD 2a_ eqD

(l---awp) (a_-l)ae (1-t-a_) (1 "t-crn,)crwpe °a

(1+(,,,.),_. -(1+,,,,.)_. (1-_.)e-_ (1_.)m,.e -°-
2 -2a a, a34 a44

t'bl

b3

b4

@

with

all _- (l+av_)[e q_- vwFe-q_]e qD

@
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a12 _ (l+av_)[e_ + v_ve-qF]eqD

a34 _ (l+a_)[e q_ - v_e-qv]

and

a44 _-(l+o_)[e qv + u_e -qv] .

Expanding these out and substituting them into [D.5]-[D.7], we obtain the solu-

tions in the LT domain. We then transform these back to the time domain

using the convolution theorem and the following inverse transform (e.g.,

Carslaw and Jaeger, 1959):

L_l{ e = (4T_ inerfc
s(_+l)/2 , n---I,0,1,...

with Re{z}_>0.

order n, with

In this relation, inerfc(z) is the complementary error function of

2 e_Z2

i-lerfc(z) _ nYz

i°erfc(z)_---erfc(z), and

2n inerfc(z) -- in-2erfc(z)- 2z in-lerfc(z) .

Consequently, the temperature field for -oo < f < -1, r > 0,

given by

i.e., the DP, is

T(f,r)-- T v + _v f-l_o _Gv(f,¢,_-")_ CD(q,")d"df

_W_ oo

+ (l+anv) _ (V_VwF)merfc{[2m-_mCl+f)]wv}
m_---0

ATvD oo

m_ (v_vv_)mvwF erfc{[2(m+l)-_m(l+_)lwv}+ =0
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r Fr,(f,_',r-/_)¢F(_',r-/_)d_ud_" + fo°_or
WD(f,¢,r--/_) Cw(¢,/_)d/_ d(

+
2a_ATv. co

(l+am_)(l+awp) 2
m=O

(vt.vv.) m erfe{ [(2m+l)-nm(1 + f)]WF}

In this relation, we have defined _m _ V_JICD, WF _ v/'P_/4r,

GD(f,_.,r) 1 { 1 }_ co7 _rP%r Y] (/Yr_wF)m '
m_O

e-{[2m+a_-f)]°a_} _ + Vr_ e-{[2m-_:m(f+¢+2)]_} _

_ vwFe-{[2(m+l)-_¢v-_(_+f+2)]o._.}_ _ Vrt_Vw_e-{[2(m+l)+lcm(_-f)]wF} 2 ,

e-{[2m+_cm(f-0]_'_} _ + Yr, e-{[2m-_vr_f+_+2)]_} _

_ VwFe-{[2(m+l)-_crdf+f+2)]_}_ _ Vr, VwFe-{[2(m+l)+a_(f-O]c.'F} 2 ,

[D.16].

-oo<_< f,

f< q<-I ,

oFFv(f6's) _ (l+ar_) zrPe,r _ (vr#'w_)m
m_---0

• { e-{[(2m+l)+_'-_c_v(l+0l_)_'-Vw_ e-{l(2m+l)-f-_q,_:_(1+0lWF} _} ,

°.{II
m--O

and _¢wv _ VQF/_W- The temperature field for -1 < f __ 0, r>0, i.e. the FL, is

given by

T(f,r)-- T, + DF(f,_',r-/_) Cv(_'au)d/_d_"

+ E (/]r:_v*) m erfc{[(2m+l)+_]WF}

m=0

ar, ATr_ co

m=_0(V_V_)mvw_erfe{ [(2m+ 1)--_]WF}(1+at,)
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+ <bF Gr(_,ff, r-t_) ¢,(¢,r-_u)dttdq

+ WF(f,q,r-/_) Cw(q,/_)d/_dq

a_,_T_ oo

m_ (vr_) m erfc{[2m-f]WF}+ (I +a_,) =0

(VmCYwr)mvr_, erfc{[2(m+l)+_]wr}

with

aWeD { 1 } _DrCe'f'r) _ (_) rrP-%r _ (vrFvv_)m
rn=0

" { e-{l(2m+l)+_-xln:_l+f)]a_}2 _ U,n,r e-{[(2m+l)-_-x_:_l+q)]wr} ' }

G,(_,_,_) _= 1 { l-A---} _
2 rrP err

oo

(._,)m
m=0

e-{[ 2m+C_--r)t._}' _ v,,w e-{[ 2m-(_+f)lwr} e

- vwe-{[ 2(m+l)+(_+Ol"_} _ + v_.,wre-{[ 2(m+l)-(_--s')]_} 2

e-{[ 2m+C_-_)l_}Lv_ e-{[ 2m-(_+_)]_} _

- vwe-{[ 2(m+l)+(_'+_)]WF} _ + vrFvv_e-{[ 2(m+l)-(_'-0]_} 2

, -l<q<_ ,

, f<_<o,

[D.17],

W_(f,q,r) __ (l+a_) { _rPewr / m=o

- { e-{12m-_+xra_']_}_ _ t.,r_e-{t2(m+ 1)+_+x_} _}

Lastly, for 0 _< f < oo, r > 0, i.e., the TW, we obtain
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T(_,r) --- T w + Dw(¢,¢,r-/_) _D(¢,/_)d/_d¢

+
2a_AT_ oo

(1 + am,)(1 + awz ) m=o
(vr_,_) m erfc{[(2m+ 1)+_r_]wF}

Fw(_,_',r-/J)¢.(¢,r-_)d_d¢

°for Gw(_,_',r-/_)¢w(_',_)d_d _"

+
AT_.. oo

(l+aw_) E (v_W_,)merfc{[2m+*:Fw_]wF}
m=0

ATFw c¢

+ (l+a_,) E (vr*,v_)mv_ erfc{[2(m+l)+_v_lwF}
m=0

[D.18],

with

2o.Oo{ 1}_Dw(_'¢'r) _- (1 + at.)(1 + av.) 7rPe-"_

oo

"E
m_0

(vn_,wF)m e-{[(2m+l)+_zw_-Ic_D(l+¢)]w_}2

oF{i}_Fw(_6'r) _ (1 + awp) rP%r

• _ (v_v,M,)m{e -{12m-_+_l_'}'-
m_---0

o_1{ 1 }__" _Pewr E (v_W,_,)m
m_0

v_re- {[2(m+ 1)+f+_rw_]_} 2}

e-{[2m+_(_-f)]_} s + vw_ e-{I2_+_(e+_)]_} _

- vnv e-{I2(m+l)+xr_(_+_)l°_}_ - urt.vw_e -{[2(m+l)+x_(_-t)]°_}_ , 0<_< _,

e-{[2m+_(_'-_)],_}*+v_ e-{[2m+_(¢+_)]w_}_

- v_e -{[2(m+l)+_(¢+_)]°_}* - Vr_Vw_e -{[2(m+l)+_vw(f-_)]_}_ , _< _'< o_ ,
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O

Each of the source terms now has the form

CA(_,r)_ PeAIDaAeA(_,r) + O(_,0)5(r)] [D.19],

where 6(r) is the Dirac delta-function.

As discussed in the text, we assume that compression/release processes in

the target establish an initial (t=0) temperature profile in the DP-FL-TW sys-

tem of the form

T(x,0) --

T D -c_ <x <-(6D+d )

TD+ A T D -( 6D+ d) < x <-d

Tr+AT m -d <x <-(d-6m)

1% -(d-Sm)<x <-6rw

T,+AT_ -6rw<x<O

Tw O<x<c_

0

e

In this relation, d is the FL thickness, T D and Tr are the temperatures of the DP

and FL, respectively, established by direct release from the shock-compressed

state to the pressure of the shock-compressed TW, and (I)D, AT m and ATrw are

the temperatures reflecting some degree of reshock heating in layers of thickness

6w 6m and di_, respectively, in the DP and FL at the DP-FL interface, and in

the FL at the FL-TW interface, respectively. Substituting these into the source

terms, CA, we have

CD(_,r) --------P%{D%%(_,r)

and

+ [h(¢+x+Sd)- }

Cp(_,r) _ PerDarer(_,r ) + Pez[h(_+l)- h(_+l-_)]--

[D.211

[D.22]

Cw(_,r) _ Pe_:)awew(_,r) [D.23],
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e

where h(x) is the unit-step function, and _-----di/d. Using [D.21], the tempera-

ture in the DP (-_<__<-1, r>0) is given by

TC_,r) -- T D + [g_(_,r,-Cl+/iD),_ ) + g+C_,r,_,-1)] AT D + avC_,r ) AT n,

+ fD(_,r,-1,-1 + _im) ATm + fD(_,r,-/iv_0) AWvw + bv(_,r) ATwF

with

[D.24],

1 oo

g_(_,T,a,b) _ -I.- -_-m_--]_0--
(v_v_,)merfc{ [2m4-_m(a-()]w v}

oo

2 m----0
(/:_//v_)m erfe{ [2m4-_cm(b-_)]w,}

1 oo

-- "_- _ (//a_gw_)m/Y_ erfc{[2m-_cm(2+_+a)]%,}
I:a=o

+
1 oo

m_O

("_g/v_)mvn, erfc { [2m-lcm(2+ _+b)]wv}

+
1 oo

m_0

(vng-'v_,)mt-'_werfc{[2(m+l)-_m(2+ _+a)]w,}

1 oo

- _- _ (vmvw_)m"wr erfc{[2Cm-I-1)-_:m(2-i-_wb)]wF}
m_0

1 oo

4- ]E
m_0

(V_//wp) m+ lerfc { [2(m + 1 )4- i¢m( a-_r)]w F}

1 oo

m_0

(vag:wp)m+lerfc{[2(m+l)4-1cm(b-_)]w F}

1 m_ (e:_,v_)merfc { [2m__m(1 + _)]wF }aD(_,r) __----(1 + an,) =0

+
1 (x)

(1 + o'_) m=o
(v_dgw_)mv_e r fc { [2(m + 1)--am(l + _)]w_} ,

1 m_._ (vnev_)merfc { [(2m+ 1)+ a__m(1 + _)]wv}fv(_'r'a'b) ---- (1 + am) --0

1 m_ (.=_a,)merfe { [(2m_l_ 1)_i_b__m(1.i_ _)]w, }(1 -{- _) =0

+
1 oo

(1 + a_) _
m_0

(I:_JZw_)mIgw_{ erfc{[(2m+ l)-a-_m(l + _)]WF}
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+
I oo

E
(1 + aa, ) m--0

(V_wF)mvw_ { erfc{[(2m + 1)-a-_m( 1+ :)]WF}

2awl _ oo

EbD(_,_)-- (t + o_,)(1+ _,) m=o(V_) TM erfc{[(2m-l-1)-_(1+ _)I¢_F}.

The function g_(_,r,a,b) comes from the integration of the second term on the

right-hand side of [D.16] using the source term from [D.21]; a and b are the

lower and upper limits of the spatial integration, respectively. We get g+ from

g_ by using the upper signs in each term having both + and - signs, while g_ is

given by the lower signs in each term.

The temperature in the FL (-1 <_<0, r>0), using [D.22], becomes

TCf, r) = T F + dFCf, r,-(1 + _D),-1) AT v + a_Cf,r ) ATa,

+ CF(f,r) AT m + 7rF(f,r) A TFw + bF(f,r) ATv_ []:).25],

with

arP m_ (vt_u_a,)merfe{[(2m+1)+_-_¢m(l+b)lwF}d.(e._.a.b)-- (1 _ _,_) =o

ar_ m_ (Vr_J"_)merfc { [(2m+ 1)+ _-_m( l+a)]wv}(1 + arF ) =0

+

a_ m_ (vr_Cvwp)mVwFerfc { [(2m + 1)___lcm(1 +b)]COF}(1 + OfF ) =0

_rl_ _ o0

(1 -1-o_) E
m_0

(v_)m u_erfc { [(2row1)-{-_m( 1+ a)]w,} ,

_(_'_) - (1 + _.,) =o

r,-1,¢) + g+(_,r,_,-1 f am), ¢ < -1 + _m,_b_(_,r)_ g;(_,r,-1,-1 + _m) _ > -1 + _m,

g+(_,_.-_._o), _ <-_.._.(_.r) _ g;(_...__) + g_+(_..._.o). { > -_..

g_(_,_',_.,b)_ ± _ E
rn _-._-0

(v___)merfc{[em+(.-_)]_}

(vr_) m erfc{[2m:i:(b-_)]w_}
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1 ¢x)

+ _'m___o(vr_v_v)mu_ erfc{[2m-(_+a)]wr}

1 oo

- _- _ (Vr_w_)mvwF erfc{[2m-(_+b)lw_}
m_0

1 OO

-- _" E (P_//v_)mv_ erfc{[2(m+l)+(_+a)]wF}
m--0

1 oo

"4- "_'m_=0 (Vrt_wF)mb'r_ erfc{[2(m+l)+(_+b)]w,}

1 oo

m_O

(u:,_,_)m+'erfc{[2(m+l):i:(a-_)lw r}

1 oo

m_O

(Vt_'wr) m+ lerfc { [2(m+ 1 _=(b-_)lwr}

OwIe oo

br(_,r) _ (l+a_) m---_-']o(/]r_Vwv) m { erfc{[2m-_lw,} - v_erfc{[2(m+l)+_l_zr} } .

Lastly, the temperature in the TW (0_<_<c¢, r>0), using [D.22], is given by
I

W(_,r) --- T w + dw(_,r,-(l+6D),-1)AT D + aw(_,r)AWr_ + fw(_,r;,_l,_l+6m)ATm

+ fw(_,_-6rw, O)AWr.,v + bw(_,r)AWFw [D.26],

with

2oi: _ oo

_v(_,r) _- (l+aw)(l+awp) E
m-_--_O

(vrCUwp) m erfc{[(2m+ 1)+x_v_]wr}

1 oo

bw(_,r) -- (l+a_) _
m----0

(Vrl_) m erfc{[2m+t:_c_lw,}

1 oo

m_ (u_wp)mu_ erfc{[2(m-l-l)-k_]wF}W (1Wawr) =o

dw(_,r,a,b)

+

fw(_,r,a,b) ----

O'DIe OO

(l+a_)(l+aw_) E erfc{[(2m+l)+'c_-tcm(l+b)lwF}
m_-0

O'i_ Cx_

(lq-a_)(1-i-a_) E erfc{[(2m+l)+xr_-xm(l+a)lw_}
m-_-0

1 (X)

(1-bawp) E erfe{[2m+tc_c_-b]w_}
m_O

1 oo

erfc { [2m+xr, c_-a]wr}
(1 +°'wv) m=O
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÷
I oo

_] u_ erfc{[2(m-i-1)-}-n_v_-l-b]w,}
(l+av_) m=0

1 o0

(l+av_) E u_ erfc{[2(m+l)+n_+a]wF} ,
m--_0

These last 3 sets of expressions are those used in the text for the temperature of

DP, FL, and TW as a function of distance away from the FL-TW interface and

time.

§13. Appendix E: Radiative Transport Model

As discussed briefly in the text, radiation from sources at the interface

and/or the shocked TW may be affected by radiative transfer through the

shocked TW, shock front, unshocked TW and its free surface. In general, radia-

tion sources include 1) the FL at the interface, 2) gas or other trapped material

at the interface and/or 3) the shocked TW. The FL is generally a metal (i.e.,

an opaque ,material), while the TW is generally an oxide, halide or silicate.

Many of these latter materials are of natural origin, possessing color and con-

taining inclusions of various sizes, some of which are potential scatterers (e.g.,

apparent Rayleigh scattering in CaO: Boslough et al., 1984). These possibilities

motivate us to formulate a model from [AIII.3] and the geometry of the target

of sufficient generality to deal with emission, absorption and/or isotropic

scattering in the shocked and/or unshocked TW. Note that in writing [AIII.3],

we have already assumed isotropic scattering. For tractability, we must accept

this as a limitation of the model. We have no a priori reason, of course, to

expect this to be true in shocked or unshocked TW containing scatterers.

Since our experiments are calibrated, we need worry only about the

differences between calibration and experimental configurations, which include

radiation sources, and the effects of the 1) shocked TW, 2) shock front, 3)

unshocked TW and 4) TW free surface on the on the source radiation. In what

@
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follows, the subscripts "INT," "SF," "USW" and "FS" will stand for the inter-

face, shock front, unshocked TW and its free surface, respectively. For simplic-

ity, we assume the target may be approximated optically as a set of parallel

plane layers. In this representation, the temperature and material properties of

the FL, shock and unshocked TW are assumed to vary at most only along the

direction of shock propagation, Y; i.e., the layers are of infinite extent in y and

.! .I

_. Further, we assume that 1x is axisymmetric about-g; in this case, ix depends

only on s-- [_'[ and the angle between-g and Y, which we designate ¢, so that

°! °!

i x _l x (s,¢). Introducing the extinction coefficient, Kx=ax+ax, the differential

opacity, dtcx=-_Kx(s)ds, and the albedo for scattering, _9_.xo=ex/Kx, _nto ram 31....... t" *".... l '

with dr--dx/cos¢, the radiation intensity in all directions forward (' _ +) in a

plane layer is given by the solution of (e.g., Siegel and Howell, 1981)

+

• , _ko_ 1

= (1-12X°)b'e(_:X) + -'2-'J0 [ix+(Ic×'P') + iX-(IcX'-Au*)]dP*
[E.1],

and

+

• ! n),o. _ 1
= (1-nXo)IxeC_x) + -T-j0 [ix+(_x,_*) + i_(_,-_*)]d_*

In these relations, 8_x_---0/01cx, _-'_l cos¢ l,

[E.2].

_x(X) _--"f0XKx(_)d_

is now a function of x, ICkd_-tck(d), and d is the layer thickness.

transport in each layer of our target is then governed by [E.1] and [E.2].

[E.S]

Radiative

Given
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a target geometry like that of Figures 1 and 2, we assume that observed radia-

tion will be dominated by radiation from the target of nearly normal incidence

(i.e., _-------1). This is the fundamental simplifying assumption of the radiative

transport model used in our work. Mathematically we express it in the form

ix±(_x,:k_) -- i),±(Icx) _i(1-_u) [E.4],

where 6(x) is Dirac's delta-functi0n. In effect, this assumption imposes a very

special averaging on the optical properties of the model, i.e., that model proper-

ties are dominated by radiation incident perpendicular to the layering of the

Putting [E.4] into [E.1] and [E.2], we obtain

•,0_xi2C_x) + ix+C_x)= (1-fiXo)lxeC_x) + [ix+C_x)+ifC_x)] [E.5],

•, nXo

-0,xifCIcx) + i)_(_x)= (1-flXo)lxeCIcx) + --_-[ix+CIcx)+i_-C_x)] [E.8].

target.

- ix+±i;.

Now we define

Substituting Ix+ and Ix_ into [E.5] and [E.6], adding and subtracting them, we

obtain

2" !

and

[E.7],

with flx--V/(1-_Xo). Eliminating

differential equation for Ix+, i.e.,

a_]x+ + If = 0 [E.8I

Ix-from these expressions, we obtain a

[E.9].

For fiXo#{1,f(_x)}, which is the case if we assume that 1) ax#0 and 2) a x and

ax#f(ax) in each layer of our model, the general solution of [E.9] is given by
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Ix+(_×)--- Ce_x + De -Bx_x+ _xf0X_sinh[/_x(_x*-_x)]i_e(iC_*)d_:x*

Then from [E.8],we have

Ix-(_x)= -0_xIx+

[E.10].

-.-_fl×CeflX'cx + flxDe -_x_x + flX2fo_XCosh[flx(_:x*-_:x)]ixe(_cx*)dlcx *

From [E.I0], [E.11] and the definitions of I{, we then obtain

IX-(_)J -- "_'[1 x' -[- ix--]

-- 21--(1:Fflx)CeflX'x + l(l:kflx)De-_X'x + i),:_(l%,)

with

[E.11].

[E.12],

ix_C_x ) = 1 a fxb, 1-,_ _efl_(_¢-_) • ,

From [E.12], we have the following conditions at the boundaries of the layer for

backward and forward propagating radiation:

if(O)-- 2(1+_x)C + l(1-flx)D ,

l'(1--.flx)De-_X_xd + i_-p(_Xd )ix-(_:Xd ) = (l+flx)Ce _" + _

÷ 1ix+(O)-- (1-Dx)C + _'(l+flx)D ,

and

1.(l+flx)De-_XXXd + ix_(lCXd ) •ix+(_:Xd) = 2(1-fl×)Ce_"+

We need only two of these to find C and D; for reasons apparent later, we
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choose the second and third relations. Solving these for C and D, and substitut-

ing the resulting expressions for C and D into the first and fourth relations, we

obtain

and

i_'(O)= 2(l-_)sinh[D)'_xd]ix+(O) -F 4_x[ix"(_Xd) -ik"p(_;),d)] [E.13]

[(lq-Dx)2e_x_xd- (l-Dx)ee-_x_xd]

ix+(/_),d) ---
4_klk'+(O) + 2(1--_)sinh[_k_kd][ik-(/¢kd) -]k'p(_kd)]

[(1q- _x)2e &_xd - ( 1-_x)2e -_x_xd]
+

With _x"_-_),sw and _Xd=_>,_, these relations apply to the shocked TW; with

_),=_xtb-_ _},d=_X_-_),_ and iX_p(_Xd)---0 (no sources), they apply to the

unshocked TW.

Next, we assume that 1) the opacity of the FL is sufficiently large so that

any radiation observed from it originates near the interface (the diffusion limit

for radiative transport), and 2) all boundaries are optically smooth, so that radi-

ation incident on these boundaries is refracted and reflected according Fresnel's

laws (e.g., Siegel and Howell, 1981). Basically, by doing this, we neglect any

scattering properties these boundaries may have. Using [E.13]-[E.14], and

assigning each boundary of our target an intrinsic normal spectral reflectivity,

r},, given by (e.g., Siegel and Howell, 1981)

rx_ _- (nxA+nxB)_ + (WXA+WXB)2

for normal incidence on the boundary between layers A and B possessing com-

plex indices of refraction nXA+iwXA and nXB+iWXB (where wxocax) , respectively,

we may construct the boundary and layer conditions for the model. At the

interface (x=_x_---0), radiation traveling forward into the shocked TW, "_×sw+ (0),
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is composed of radiation emerging at the shocked-TW-side of the interface from

the FL and/or gas, SX+mT(0), plus that component of the backward-traveling

radiation (iX-sw(0)) reflected off the interface back into the forward direction, i.e.,

iX+sw(0)- Sx+_cr(0) + r×_cr ix-sw(0) [E.15].

This is the boundary condition at the interface. From [E.13] and [E.14], we

have conditions for forward and backward-traveling radiation in the shocked

TW (0<x<xs,, 0<x×<_), --x),(x_)):

iX-sw(0)- cx iX+sw(0)+ c2 i)_sw(XX_ ) + Sx-sw(XX_ ) [E.161

iX+sw(XXa,)---- c2 iX+sw(0) + cl ifsw(X×_) + Sx+s_(Xx_) [E.17].

At the shock front (X=Xsf , xx =xx(Xst)) , we have radiation transmission in both

directions and reflection from both of its sides, i.e.,

ifswCtcx_) -_- c3 i_-_w(XX_ ) + r),_ ix+sw(Xx_,) [E.18]

ix+_.w(xx_) --" c4 iX+sw(XX_) + r×a, ifusw(XX_) [E.19]

Again using [E.13] and [E.14], the conditions in the unshocked window

are givenby (with i e, no
emission from the unshocked window)

if_-v_xx _) ---- c5 ix+t_(_x_) + c8 ii-t_._(xxm) [E.20]

ix+tb.w(XX.) -- c6 ix+_.w(XX_) + cs i;_.w(XXrs) [E.21].

Lastly, at the unshocked window free surface (x=xfs , XxFs-----Xx(Xfs)) , radiation

traveling back into the unshocked window, ix-usw(xxFs) , is equal to that com-

ponent of the forward-traveling radiation incident at the free surface, ix+L_w(_x_s) ,

(x=xfs, tCxm----xx(xfs)) reflected into the window, i.e.,

i;_w(tcx_) = rx, ix+usw(XXrs) [E.22].

The coefficients and source terms in these relations are given by
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2( 1-Bx2sw)sinh [_xsw_ x _]
C 1 _ )

[(1 + _),sw)2e _x's'wr x_" - ( 1-_Xsw)2e -_x_]

c2 _- [(l+_xsw)2eCX._¢¢x__(1-flXsw)2e-¢Xsv_xw]'

C3 M (1-rxsr)_ C4,

2(1-,Sx_)sinh[,SX_w(XX_s-_xsF)]

cs _ [(1-F,OXmw)2e _x'-_xxFs-_cx-_') - (1-,Skusw)2e -_x'js_xm-tcxs_)] )

4,0xt_,v

c6 _--- [(1-1-/_xusw)2e "Oxt_'w(xx_-xxa')- (1-/_._.,=w)2e -_xt_s'w('cx_-xxw)]

Sx+mv(O) = (1-rxn, rr) iX+e_rr(O) ,

sx-_(_) =
[( 1 +/_Xs..,u)2e'8:'_¢cx_' - (1-_ksw)2e -&-*w_ x_']

and

Sx+sw(xx_ ) _-_ ix+s._(rxw ) - 2(1-/_Xsw2)sinh[/_Xsw_XsF] i_-swp(_X_) "
[(1-.l-,SXsw)2e'Sxsw_xs_'- (1-_),sw)2e-#xsw'¢xsF]

Relations [E.15]-[E.22] constitute 8 equations in 8 unknowns. We are particu-

larly interested in calculating iX+b.W(XXFS),since the radiation escaping the target

destined for detection is then given by

ixob,(_x_)= (1-rx,_)ix+_(_x,_) [E.23].

The system [E.15]-[E.22]may be cast into the following matrix form
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-rx_cr 1 0 0 0 0 0 0 ]

b1 -c I -c 2 0 0 0 0 0

0 -c 2 -c I 1 0 0 0 0

0 0 1 -rxs _ -% 0 0 0

0 0 0 -C 3 -rx_ 1 0 0 [

J0 0 0 0 1 -% -%

0 0 0 0 0 -% -%

0 0 0 0 0 0 1 -rxF s

I i;_w(O)

i_L(o)

i;_.(_x_)

s_L:(o)

s;_(,_x_)

0

0

0

0

0

[E.24].

In matrix notation, this is [A]{i}--{d}, where [A] is a reflectivity-transmissivity

matrix, {i} is a vector of the forward and backward traveling radiation intensi-

ties at the boundaries, and {d} is a radiation source vector. Decomposing [A]

into upper and lower bidiagonal matrices, tALl and [Au], respectively, we find

the solution of [AL]{V}_{d } and use this to solve {i}=[Au]-'{v }. Solving this

system gives us an expression for ix+ (_x_s), which we substitute into [E.22] to

obtain

ixob_(_x_)-rx [sx_:(o)+ Sx_w(_XJ] [E.25],

In this relation, we have

Yx =-- _£1[(1-rx.,)(l-rx_)%] ,

-_X-----[(1-rx_rCl)(l-clrx_)- rx_rc22rxsi,][(l-rx_cs)(1-csrx,,s)-rx_%2rxFs]

-[(1-rx_crcl)c I + rxnerc22](1-rx_)2[(1-csrxps)cs + c_rx_s]

is the effective transmissivity of the shocked TW, shock front, unshocked TW

and its free surface,

Q
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A),(tc),sF,f) _--_2fl),sw[(1-rx_rcl)(1+fl),sw)- [Cl+(C22-c2)rxn_rr](1-flXsw)]e/_xsw(f-axs_)

- lZ_w[(1-r_cl)(1-Z_,w) - [cl+(c#-c_)r_l(l+Z_.)]e -p_-_)

is the intensity of sources in the shocked TW along _, and

SX_T(0 ) --_ c2(1-r),_r)i_n_r(0 )

is the combined effective intensity of all interface sources. Relation [E.25] is the

principal result of this appendix, and constitutes the simplest model incorporat-

ing scattering, absorption and multiple reflections that we can derive for radia-

tive transport in the target. As it stands, [E.25] is sufficiently general for com-

parison with observations from a number of different radiation experiments. At

this point, however, our main interest is in the interface experiments discussed

in the text, so we now specialize [E.25] to this purpose.

For cases where there is apparently no scattering in the shocked TW, and

none in the unshocked TW, we may set flxs_flXmw_l in [E.25]; in this case,

C1_C5_0 and

c 2 -- rXsw ------e -'_ , c8 -- r),mw----- e -(_s-_x_) [E.26]

_x -- (1 - rxFsrXUmwrxsr)- rX2sw[rXFs(1 - 2r×s_)c_ + r),s,]rx_rr [E.27]

and

Ax(_x_,_)= *X_w[e*+ rx_-_] [E.2S].

From [E.27], we note that, in general, neglect of multiple reflections when

{rx, r),)--*l is clearly incorrect and can lead to underestimate of the source

intensity by the model. However, for the experiments of interest here, we do

have r),--_0. In this case,

Ex(X,t) _ 1 - (r),Fs+r),_.r)r),s_ - rxps(1-2rxs,)rx_rr = 1 - O(r 2) [E.29]
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and multiple reflections are, to first order, negligible. Now if we assume each

region of the dynamic target optical geometry possesses a distinct extinction

coefficient, and that, in each layer of the target, optical properties are homo-

geneous, we have

[ Kxsw(X)'

Kx(x) "-- / Kxs'(X) '

0<x <x_,,

xg,<x <x + ,

x+<x<d,

[E.301

where x_ is the position of the shock-front in the SW, x + its position in the

USW, and x+-x_ is the shock-front thickness. Putting this into [E.10], we have

,_xs, tX,x/---- tX×sw_a / x_ [E.al]

and

_xFs(),,x) -- Kxsw(X) x_ + KxgX) (xg-xg) + Kxt_w(X) (d-x_) [E.32].

For steady shock-wave propagation (i.e., constant U), x and t are not indepen-

dent, and we may write

[E.331x_(t)--- (u-v-)t

and

= (u-v+)t [E.S4],

where u is the speed of displacement of the shock front, and v- and v + are the

material velocities behind and in front of the shock front (see General Introduc-

[E.35].

[E.asl

[E.371

tion). Putting these in, we have

sxFs(X,t)-- Kxsw(X)(u-v-)t + Kxsp(X)(v---v+)t + KX_.w(X)[d-(u-v+)tl

Defining

Kx*sw(X) = Kxsw(X) (u-v-) texp

Kx*s_(X) = Kx_(),) (v--v +) texp
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and

K;_×)--K×_(X)d [E.381

as nondimensiona] extinction coefficients,and setting v+--0, we have

_×m(X,t)-- K;sw(X ) t/tex p + K;sr(), ) t/tex p + K;usw(>, ) (1--t/texp) [E.391.

If we treat the shock front as a 2-D boundary, rather than a thin layer, K×s --*0.

In this case, we have

_:)._(X,t)-- K)_sw(X ) t/tex p

and

tCxm(),,t ) ---- ICx_(X,t ) + K)_(X) t/tex p + K)_.w(X ) (1-texp)

[E.40]

[E.41].

[E.40] and [E.41] are the expression we use in [E.26] and the text. Lastly, if we

ol

assume that sources in the SW are distributed uniformly, b,e_w(_) is independent

of x, i.e., spatially uniform, and from [E.22], this implies

@

----(1-r;_sw)(l+rxn_rrrxs, N)Ii_(X,Tsw)

.!

assuming that b, esw is given by the Planck function.

[E.25], we obtain, with 2)j-_1

[E.42],

with

and

Putting these results into

ixob_(x,t)= rx [Sx_(O)+ s×_(_×_)l

F x ---_ (1-rxFs)rXt_w(l-r),_)

[E.431

Sx_(0) -- rx_(1-r×,,_)I_iX,T_,_(t)],
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which is the expression we use in the text. The Hugoniot temperature SW, Ts_

is homogeneous, uniform, and constant since we assume a uniform distribution

of SW sources. The interface temperature, T_cr(t), however, is a function of

time, or constant, in the context of the conduction model discussed in Appendix

D.
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Abstract

Shock-compressed MgO radiates thermally at temperatures between 2900

and 3700 K in the 170-200 GPa pressure range. A simple energy-transport

model of the shocked-MgO targets allows us to distinguish between different

shock-induced radiation sources in these targets and estimate spectral

absorption-coefficients, a_vco , for shocked MgO (e.g., at 203 GPa, ax_o_-_6300,

7500, 4200 and 3800 m -1, at 450, 600, 750 and 900 nm, respectively). The

experimentally inferred temperatures of the shock-compressed states of MgO are

consistent with temperatures calculated for MgO assuming that 1) it deforms as

an elastic fluid, 2) it has a Dulong-Petit value for specific heat at constant

volume in its shocked state, 3) it undergoes no phase transformation below 200

GPa, and 4) the product of the equilibrium thermodynamic Gruneisen's parame-

ter, _, and the mass density, p, is constant and equal to 4729.6 kg/m 3.

§1. Introduction

The mechanical response of materials to high pressure has traditionally

been investigated by shock-wave or static-compression experiments that con-

strain, among other things, the pressure-density "equation-of-state" behavior of

these materials. As first demonstrated by Soviet workers (summarized by

Kormer, 1968), optical radiation from the shock-compressed state of certain

transparent materials has l_he potential to constrain the temperature of their

compressed state. The emission of radiation from shock-compressed transparent

materials is rather remarkable from the point of view that these materials are,

at least initially, dielectrics. Shock compression apparently transforms ionic

materials (e.g., NaC1) into semiconductors (Kormer et al., 1966) with electrical

conductivity up to 101°-times that of the uncompressed material. Among

initially-covalent materials, Ahrens (1966) inferred a _-_102 increase in the electr-

ical conductivity of MgO shock-c0mpressed above 92 GPa, and Knittle and
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Jeanloz (1986) inferred a similar increase in the electrical conductivity of FeO

statically compressed above 70 GPa. For MgO, at least, this change in electri-

cal conductivity at high pressure is thought likely due to extrinsic (e.g., defect)

processes, rather than to band-gap closure (e.g., Liberman, 1978; Chang and

Cohen, 1984), as discussed below.

Oxides accepted as predominant chemical end-members of the material

constituting the earth's mantle include MgO, FeO, A1203, CaO and SiO 2. Of

these, (Mg,Fe)O may be an actual constituent of the earth's mantle below 670

km (e.g., Jeanloz & Thompson, 1983). Hence the complete (P, T, p) equation-

of-state of MgO is relevant to studi_.q _¢ the earth's m_.,÷1_ _'nong "1- .... '-........... a._c..bu _Lu o bLtg lLtaIl b[_

oxides, radiation emitted from SiO 2 (Lyzenga et al.,1983) and CaO (Boslough et

al., 1984) shock-compressed above 60 and 140 GPa, respectively, has been stud-

ied using optical pyrometry (Kormer, 1968; Lyzenga, 1980). Optical radiation

from MgO, A120 3 and SIO2, all shock-compressed to pressures below 75 GPa,

has also been studied spectroscopically (Schmitt & Ahrens, 1984; Schmitt et al.,

1986). ff the wavelength-dependence of this radiation is consistent with a grey-

body source, it may be interpreted in terms of the temperature and effective

emissivity of the shock-compressed material. In the pressure range investigated,

shock-induced radiation from both initially amorphous SiO 2 (10 to 110 GPa)

and initially crystalline (B1) CaO (140 to 180 GPa) is consistent with this type

of source. Radiation from a-SiO2, however, is clearly consistent with a grey-

body source only above 60 GPa (Lyzenga et al., 1983; Schmitt et al., 1986).

Note that shock-compressed SiO 2 transforms to stishovite above 16 GPa and

melts above 70 GPa (Lyzenga et al., 1983), while shock-compressed CaO

transforms from a B1 to a B2 structure (Jeanloz et al., 1980), and FeO to an

unidentified phase (e.g., Jeanloz & Ahrens, 1980a; Jackson & Ringwood, 1981),

both above 70 GPa. Both MgO and A120 3 apparently do not change phase dur-

ing shock compression. Considering the sensitivity of optical radiation to
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energy processes, as well as the complexity of interpretation introduced by

dynamic phase transformations (e.g., SIO2: Lyzenga et al., 1983), we studied

the thermomechanical response of shock-compressed MgO as a material

apparently uncomplicated by phase transitions, at least below 200 GPa. Since

the experimental results we present below are consistent with a simple thermos-

tatic model of MgO, which includes the assumption of no phase transition, we

conducted only 4 experiments.

§ 2. Experimental

We conducted the experiments on a two-stage, light-gas gun (e.g., Jeanloz

& Ahrens, lg80a; Figure 2.1). In these, a lexan-encased tantalum (Ta) flyer-

plate, moving at 5.7 to 6.5 km/sec (Table 4.1), impacted a 1.5 ram-thick Ta

driver-plate in contact with the (100) face of a 3 mm-thick synthetic single-

crystal of magnesium oxide (MgO" similar to those used by Vassiliou & Ahrens,

1981). We covered the free surface of the MgO crystal with an aluminum mask

to avoid observing radiation from the target's edge. Radiation from the target

reflects off a mirror, propagates though an objective lens, and is directed by a

(dichroic) pellicle beam splitter and two half-silvered beam splitters into 4

detectors filtered at nominal wavelengths of 450, 600, 750 and 900 nm. We

recorded the signal from each detector on a Tektronix 485 single-sweep oscillo-

scope and a LeCroy (model 8081) 100-MHz transient recorder.

Wanting to observe radiation from MgO, we attempted to minimize the

radiation intensity of the Ta-MgO interface by vapor-depositing 500-1000 nm of

silver (Ag) on MgO, and then placing the Ag "film" in mechanical contact with

the Ta driver-plate to form the target. Requiring a material that would not

maintain a high temperature during the experiment, we chose Ag for its high

thermal conductivity at standard temperature and pressure (STP: 298 K and
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Figure 2.1. Geometry of the light-gas gun radiation experiment after Boslough

(1984). The projectile, shot through the barrel, impacts the sam-

ple at velocities between 5.7 and 6.4 km/sec. Radiation from the

sample is bent 90 ° by the mirror, travels through the objective

lens, and is divided up by the three-beam-splitter arrangement

among the 4 channels of the pyrometer. The resulting signals

from the photodiode in each channel are monitored by oscillo-

scopes and LeCroy transient digital recorders.
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0.1 MPa) and ease of deposition. We expected this Ag film to absorb any radia-

tion from the Ta-Ag interface, heat up much less than a mechanical Ta-MgO

interface (Urtiew & Grover, 1974), and contain no trapped gas that could also

contribute to interface radiation (Boslough, 1985).

§3. Model Calculations and Data Analysis

Our experiment begins when the projectile, containing the Ta flyer plate,

impacts the Ta driver plate. This process generates two shock waves at the

flyer driver interface, one traveling forward into the driver plate and the other

back into the projectile. When the shock wave propagating through the driver

plate reaches the driver plate-film (Ta-Ag) interface, a lower-amplitude shock

continues into the lower shock-impedance Ag-film, and a release wave is

reflected into the driver plate. Once the interface is compressed, the balance of

mass and momentum require that the component of the material velocity and

stress fields, respectively, in the driver plate and film normal to the interface be

continuous across it. Consequently, the compressed state of the driver plate

releases to a state having nearly the magnitude of the normal stress and

material velocity of the shocked-Ag film. An analogous process occurs at the

Ag-MgO interface, releasing the sh0ck-compressed Ag to a state with essentially

the same normal material velocity and stress as the shock-compressed MgO.

Since the film is so thin, the driver plate releases (a second time) shortly after

this to a similar state. Wave reverberations quickly bring the driver plate and

film to states with the normal stress and material velocity of the shocked-MgO.

All of this occurs on a time scale less than 1 nanosecond (ns), and is not detect-

able by the pyrometer.

The basic data are in the form of radiation intensities at the four

wavelengths mentioned above, and these are measured as a function of time.

Clearly, the time-resolution of the data is much better than the wavelength-

@
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resolution. We present an example of these data in Figure 3.1, an oscilloscope

record at 750 nm for shot 146 (Table 4.1). Using the known radiation intensity

of a standard lamp (Boslough, 1984) at the observed wavelengths, we transform

these raw data into experimental spectral radiation intensities (in the form of

spectral radiance) as a function of time. The result of this procedure for shot

146 data is displayed in Figure 3.2.

We interpret the temporal and wavelength variations of data in the context

of the following model, a slight modification of Boslough's (1985) model (see also

Boslough et al., 1986; Chapter I, §6. and Appendix E). We assume that the

shock-compressed/released_ _A_g-film _.st the ,A"_,_,,_,_r_ interface, and shock-

compressed MgO, are the only sources contributing to the observed radiation.

Further, assume that the shocked-MgO layer radiates uniformly along the direc-

tion of shock propagation over the time scale of the observations. Then the

total radiation intensity, IXmod(k,t), a function of wavelength (k), and time after

the onset of radiation from the target, t, is the sum of that fraction of each

source intensity that emerges from the front of the target, i.e.,

IXmod(>,,t) _--- _x_(t)Ixpl(k,W,_,o ) + _x_vr(t) Ixpl[k,Wa_T(t)] [3.1],

where the "k" subscript indicates a spectral quantity. In [3.1], Tu4 o is the

shock-compressed (Hugoniot) temperature of MgO (assumed homogeneous, uni-

form and constant), and T_tr(t) is the temperature of Ag at the Ag-MgO inter-

face. Further,

_x,_(t) _ [1-r_s ] rx=,ao(t ) [1-rx._] [l+rxacr rx_o(t)] [1-rxx_o(t)] [3.2]

and

_xa_r(t)-= [1-rxt_] rx_o.o(t ) [1-r_] rx_o(t ) [1-ru_rr ] [3.3]

are the effective normal spectral emissivities of the shocked-MgO and Ag at the

Ag-MgO interface, respectively, while rxFs, rx._ and rx,_rr are the effective normal
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Oscilloscope record of radiation intensity history at 750 nm for

shot 146. The radiation intensity rises sharply off-scale at t---_0 as

the shock wave compresses the Ag-MgO interface to high tempera-

ture (see Table 2). Decay of the interface temperature and/or

absorption of interface radiation in the growing shocked-MgO

layer (see text) causes the observed intensity to decrease sharply

with time to about 170 ns into the experiment, at which point the

radiation intensity becomes approximately time-independent.

After about 240 ns (ts) , the shock wave reaches the free surface of

the MgO, and the experiment is over.
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Figure 3.2. Spectral radiance data for shot 146 at 450, 600, 750 and 900 nm.

Note that t--0 in this figure has the same meaning as in Figure
3.1.
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spectral reflectivities of the MgO free-surface, shock front and Ag-MgO inter-

face, respectively. Also,

r_o,o(t ) ---- exp[-a_o_l-t/texp) l [3.4]

and

exp[- t/texp] [3.5]

are the effective normal spectral transmissivities of unshocked and shocked-MgO

layers, respectively. In [3.4] and [3.5], a_oand _ are nondimensional forms

of the effective normal spectral coefficients of absorption in unshocked and

shocked-MgO, respectively, given by

[3.6]

and

-- (U-v o)tex.

a_o.o_- _o Utexp [3.7]

Note that texp-_d/U is the experimental time scale, U is the shock wave velocity

in MgO, d is the initial thickness of the MgO layer in the target, and v_ is the

material velocity of the shock-compressed state of MgO. Lastly, we have

C1
Ixpl(k,T ) _---

), 5 [eC_/XT _ 1]

(with C 1 ---- 1.1g088X10-1°W'm 2 and C 2 ---- 1.4388X10-2m-K) as the Planck

function.

A.qsuming the optical boundaries (e.g., Ag-MgO interface) are smooth (i.e.,

surface roughness much less than radiation wavelength), the effective normal

spectral reflectivity of the boundary between any two of these layers is a func-

tion of the change in the (complex) index of refraction across the boundary

(e.g., Siegel & Howell, 1981; see below). The effective emissivities [3.2] and [3.3]

are correct to first order in r_s, r_ and r_cr; we assume second- and higher-order
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reflections are negligible (Boslough, 1985; Chapter I, Appendix E). Because of

this approximation, [3.2] and [3.3] are, strictly speaking, lower bounds to t_o(t)

and _x_r(t), respectively. Boslough (1985) also implicitly assumes rxn,rr _ 0 in

[3.2]. Although the absorption coefficients and reflectivities are written without

an explicit dependence on )_, they may be wavelength-dependent, as discussed

below.

Of all parameters influencing IXmod(k,t), only Tm.r(t) is assumed to be poten-

tially time-dependent. This clearly complicates the time-dependence of the

observed radiation. In addition, through the Planck function, TroT(t) can

influence the wavelength-dependence of i_,mod(k,t ) with time. A number of

models for Thor(t) are considered by Grover & Urtiew (1974; see also Chapter I,

§5. and Appendix D). For completeness, and as a basis for assumption, we out-

line one of these models, presumed appropriate to the MgO experiments dis-

cussed in this work. Assume that 1) energy transport is predominantly parallel

to the direction of shock propagation (i.e., one-dimensional), 2) conduction is

the only energy transport process that substantially affects the temperature in

any part of the target on the time scale of the experiment, and 3) shock

compression/release processes in the target establish an initial (t--0) tempera-

ture profile in the Ta-Ag-MgO system of the form

T(x,O)--
T_, -co<x<- ,6

T,_, -8<x<0,

T_o, 0<x<oo ,

[3.8],

where 6 is the film thickness. Note that we assume the driver plate (Ta) and

MgO are thermal half-spaces. This last assumption presumes that shock

compression/release is much faster than conduction in any part of the target:

T_, and T_ are the temperatures of the partially released Ta and Ag, both at

the pressure of the Ag-MgO interface (i.e., pressure of the shock-compressed
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MgO). In the context of this model, all material properties of each target com-

ponent are constants, and referenced to their respective states at the pressure of

the Ag-MgO interface.

The temperature of a singly shock-compressed material, Tm may be

estimated from a classical thermodynamic energy balance (e.g., Ahrens et al.,

1969; Jeanloz 35 Ahrens, 1980b; see Chapter I, §4. and Appendix A) in which we

assume the material compresses as an elastic fluid. It is possible that Ta (above

,---,295 GPa: Brown 35 Shaner, 1984) and/or Ag (_185 GPa: Lyzenga, 1980)

melts in the range of pressures and temperatures achieved in our experiments.

Th_ data _r Carter et al (ln.Tl_ , .......... _,o, ,j, Vassiliou 35 Ahrens t1_1; and our results

below) show no clearly resolvable phase transition in MgO below 200 GPa. For

simplicity, we assume that Ta and Ag do not change phase in our experiments.

If this is wrong, the values of T H we estimate for Ta and Ag are upper bounds

to the true shock-compressed temperature (everything else being equal), since

shock-induced phase transformations use energy otherwise available for heating

the material. In the absence of phase changes, then, our estimate of T s is given

by

1 1

TH-- [Ts-'_Aes} +-_% {_

1

PH } P" [3.0]

assuming that c_ the specific heat at constant volume of the shock-compressed

state, is independent of temperature. The subscripts "i," "H," "S," and "V"

designate initial (STP), shock-compressed, constant entropy and constant

volume states of the material, respectively. In [3.9], Ae s is the change in specific

internal energy of the material compressed isentropically (at specific entropy si)

from its density at STP, Pi, to a density PH (that of the shock-compressed state),

while T s is the temperature of the material along the isentrope referenced to s i

and Pi- Also, PM is the pressure of the shock-compressed state.

O
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We estimate PH from the balance of mass and momentum across 1) the

shock front in each target material, and 2) the material boundaries between the

target materials (impedance match: Rice et al., 1958), by making the constitu-

tive assumption that the component of the shock-wave velocity normal to the

shock front, U, is a function of the change in the normal component of the

material velocity, v, across the shock front. On the basis of the U-v data for

Ta, Ag and MgO, we assume that U is a linear function of v (Table 3.1). The

change in temperature along the compression isentrope, Ts, may be estimated

from the classical thermodynamic Gr_neisen's parameter, -y, via the relation

{ 0inT } [3.10]"_ =" cglnp s "

Since we assume "_p is constant in all model calculations, this relation integrates

to

T s -- T(si,p. ) _ T(si,Pi)exp{_/(pi)[i- p_-}} .
P.

Relations [8.9] and [3.10] imply that 2". is dependent on _ only indirectly,

through Ts. We estimate Aes from a third-order spatial finite-strain parameteri-

zation(eg, Davies,lg73).Consequently, ,,,here and
I_ are the (STP) isentropic bulk modulus and its first pressure derivative,

respectively, of the material (Table 3.2).

As stated above, T_, and T_ are the temperatures of Ta and Ag at the

pressure of shock-compressed MgO. We estimate the change in temperature

due to release of Ta and Ag from their respective shock-compressed states, to

their respective released states, by assuming that release occurs isentropically.

This allows us to use [3.10], assuming no phase transitions occur during release.

Also, we assume that each interface is smooth (Urtiew & Grover, 1974; see

Chapter I) in the sense that the shock front is thicker than the interface "gap"
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Table 3.1. Standard Temperature and Pressure (STP) Parameters.

O

Property

Density p

Intercept of U-v relation_ a

Slope of U-v relation b

Bulk modulus K s

(0K_0P)s K_

Specific heat %

Thermal expansion a

Melting temperature T M

Gr_neisen's parameter _/

Thermal conductivity k

Elastic Debye temperature 0D

Symbol Ta Ag MgO Units

16.676 i 10.501"

3.2936 3.27 c

(±0.049)t
1.307 b 1.55 c

(+0.025)
180.8 e 109.6 e

4.23 _ 5.20 g

140.2" 235.5"

1.8 h 5.7 h

32871 1234'

1.4 i 2.5 i

57.5 i 427. i

263.8 k 226.4 k

3.583"

6.61 d

(+0.060)
1.36 _

(+0.020)
162.7 I

(+O.2)
4.27 _

(4-0.24)
937.4"

2.7/*

Mg/m a

kin/see

GPa

3125" K

1.3 i

60 / W/m.K

9421 K

e
Uncertainties as quoted in source.

:[: £e., U--a+bv.

• Robie et al. (1978).

6 Mitchell and Nellis (1981).

* Marsh (1980).

'_ Vassiliou and Ahrens (1981).

, Calculated a_uming _pa _.

! Jackson and Neisler (1982).

s Calculated assuming K_----4b-1.

I, Touloukian et al. (1975).

i Calculated from 7-_---aKs/pc P.

i Touloukian et al. (1970a).

k Alers (1965).

I Kieffer (1979).



- 197-

@

O

0

@

@

(Urtiew and Grover, 1974) due to roughness of the surfaces forming the inter-

face. This is consistent with the expectation that the Ag-MgO interface should

be smooth, as discussed above. At this idealized interface, Ta releases directly

to the pressure of shock-compressed Ag, and then both Ta and Ag release to the

pressure of shock-compressed MgO.

To calculate the release temperature, we need the density of Ag and Ta in

their respective release states. We estimate this using the variational method of

Lyzenga & Ahrens (1978) to obtain a lower bound on the density of the chosen

release state. This gives us, in turn, a lower bound on the temperature of that

state through ...........[a.ln]. A_ w_h.. the _,_,_,,,*_,v--o_nl_"tn*'^--^of T H, we neglect the effects of

phase transitions driven by release and/or recompression on the resulting inter-

face temperature.

As boundary conditions, we assume that the temperature and energy flux

are continuous across the Ta-Ag and Ag-MgO interfaces, and use [3.8] to solve

for the Ag-MgO interface temperature, Thor(t), i.e.,

T_T(t ) = T_ +

In [3.11], we have

oo

2,'_,A%,- T,.)

m----0

¢(t)- o_,,,(T,,- T_o)
(l+a,_ol_)

(v,,,,o,.,,v..,.,.,.,,)_ erfcl(m+_),__]

and

¢(t) ----- 1 - u_,_erfc[__ +

¢(t) [3.11].

oo

E (//x'_goI.Az /'/*r*l._) m era(t)

m-_-I

with

e=(t) -- erfc[m__]- v_,,,_erfc[(m+l)__

_o in [3.11],_ __ _/__, while

0
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and

k_%._
[3.12]

k_%_, [3.13]

are the thermal-inertia "mismatches" (Carslaw & Jaeger, 1959, p. 321) between

Ta and Ag, and between MgO and Ag, respectively, at the pressure of the Ag-

MgO interface. The parameters vM,ol _ and v_l _ represent combinations of

av4ol _ and av, l_, respectively, {. e.,

(a_Iol.W-1)

u,,,,o,.,,_ (a,_,o,.,,+l)

and

(a, ml._-l)

v_l_, -- (a_t__+_l) "

In [3.12] and [3.13], k, 9 and % are the thermal conductivity, density and

specific heat at constant pressure, respectively, of the designated material and

appropriate state of each material at the pressure of shock-compressed MgO.

To estimate the values of a_ and a_olA , at high pressure, we need the

appropriate values of k, p and %. The densities result from the impedance

match and/or isentropic release calculations, while the high-pressure specific

heats at constant pressure come from the relation

%-- 3nP..(l+ _'TT)/M, [3.14]

where n is the number of components in the formula unit, M is the molecular

weight, R is the gas constant, and a is the thermal expansion (assumed

independent of pressure and temperature). Note that we assume the high-

temperature limit for cv (3nR/M). In the context of the Debye model, this

presumes that all target components are well above their Debye temperatures

I
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(STP values are given in Table 3.3). In addition, this assumes that the elec-

tronic contributions to cv are small relative to 3nR/M. Since the lowest-order

electronic contribution to cv scales with temperature, cv would be larger than

assumed here if these contributions are significant. If this is true, our estimates

of both cv and % will be too low, while the temperatures will be too high, at a

given pressure.

Assuming that k_ and k_ are dominated by their electronic contributions,

we assume the relevance of the Wiedemann-Franz-Lorenz (WFL) relation

Pek

T = 2.45 X 10 "_ W'12/K 2 [3.15]

(e.g., Berman, 1976), where Pe is the electrical resistivity, to estimate k.r, and k_

from electrical resistance data on shocked-Ta and Ag, respectively. To our

knowledge, shock data exist for Ag (Dick & Styris, 1975) up to 12 GPa, but not

for Ta. Bridgman (1952) investigated the change in electrical resistance of

many statically compressed materials, including Ta and Ag, but again only at

low pressure (..<.10 GPa). Keeler (1971) investigated the change in the electrical

resistance of shock-compressed copper and iron up to 140 GPa. He found that

the resistivity of shock-compressed Cu decreased from _ 1.67 to 0.56 _12-cm

with pressure up to _ 100 GPa; a datum at 140 GPa implies that the resis-

tivity of Cu reaches a minimum between 100 and 140 GPa and then increases to

_-- 0.83 /Jfl.cm at 140 GPa. As for Fe, the data imply that its electrical resis-

tivity decreases from _ 2.5 to 0.47 _12"cm between 13 and 140 GPa (above the

a---_e transition). In light of [15], these trends imply that the thermal conduc-

tivities of shock-compressed Cu and Fe increase with shock pressure. On the

basis of the behavior of Cu, we naively assume that the electrical conductivity

of Ta and Ag generally increases with shock pressure. Then, from [15], we see

that a calculation of 1_ and k_ using the STP electrical resistivities

(P_T, -- 12.45 _i2-cm and Pe_ -- 1.59 _ui2-cm: Weast, 1979), along with the
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appropriate release-state temperatures of Ta and Ag, respectively, will give us a

lower bound on these thermal conductivities. As for k_o , we assume it is dom-

inated by its lattice component at high pressure, and use the lattice thermal-

conductivity model of Roufosse & Klemens (1974) to estimate it. This assump-

tion is supported by band-gap calculations for MgO (e.g., Liberman, 1978), and,

in vlew of [3.15], by the results of Ahrens (1966), which suggest that the electri-

cal resistivity of MgO is ,--,109 _'cm above 924-7 GPa.

Having established the means, we calculate selected model parameters at

high pressure from the STP parameters given in Table 3.1 and list the results

for each experiment in Table 3.2. From the impedance match and partial-

release calculations, we obtain the density of Ta, Ag and MgO at the pressure

of shock-compressed MgO, and from these, through [3.8] and [3.9], we obtain

T_, T_ and W_ for each experiment. Using these with [3.14], [3.15] and the

model of Roufosse & Klemens (1974), we estimate a_l _ and a_l _ for each

experiment and compare them with their STP values in Table 3.3. Also, we

have calculated a_l _ and a_l _ as a function of Ag-MgO interface conditions

(pressure) and displayed them in Figure 3.3. Again, the values of k for each

materials, especially the metals, are probably the most uncertain aspect of these

estimates. On this basis, we see that av, r_ is approximately independent of

pressure and temperature. However, a_ot_ decreases steadily from approxi-

mately 0.44 at STP to 0.03 at 200 GPa, mainly because of the large increase in

k_ (Tables 3.1 and 3.2).

From [3.11], the initial value of T_t) is given by

as_o,_(T _ - TMIo)

%- [3.1s]

This is also the value of T_t) with _=_. For t---_ or E--0, Tnvr(t) is given

by
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Table 3.2. Model Parameter Estimates for MgO Experiments.

O

O

O

Shot

166

147

145

146

Material

Wa

Ag

Mg0

Wa

Ag

Mg0

Wa

Ag

Mg0

Wa

Ag

Mg0

Shock-compressed state

P T

(GPa) (K)

336.6 14430

277.7 13560

174 0 onl_

349.1 15320

288.2 14330

181.1 3032

364.3 16420

300.9 15270

187.9 3257

395.0 18730

326.7 17240

203.1 3667

p T

(Mg/m 3) (K)

28.130 11860

17.190 11400
OAff_.o_o 2913

28.350 12600

17.290 12060

5.426 3028

28.600 13470

17.410 12810

5.442 3257

29.130 15320

17.640 14420

5.536 3667

i

Ag-MgO interface state

p k %

(Mg/m 3) (W/m'K) (J/kg'K)

22.750 2336. 165

15.440 17600. 487

5.345 32.6 1324

22.90 2477. 167

15.53 18570. 500

5.43 32.1 1326

23.010 2651. 169

15.590 19760. 516

5.442 31.5 1332

23.280 3014• 173

15.750 22230. 548

5.536 30•5 1342

B
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Figure 3.3. Estimates of av.,_ and autot _ as a function of the Ag-MgO inter-

face pressure. The decrease of crv_ol_ with pressure is due to the
temperature-dependence of the the Wiedemann-Franz-Lorenz

thermal-conductivity parameterization for Ta and Ag given in the

text, causing k_ and k_ to increase with pressure. These curves

are lower bounds to ea_j_ and au_ol_ if k_ and k_ become

independent of temperature at high pressure (see text).
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Table 3.3. Thermal-Inertia Mismatch Estimates at STP and High Pressure.

Conditions a_l_, a_ol_,

STP 0.36 0.44

Shot 166 0.26 0.04

Shot 147 0.26 0.04

Shot 145 0.25 0.04

Shot 146 0.25 0.03
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Tn_T(C_) = TA,

2 [a_,_(T_- T_)- a_,_(T_- T_o)]

+ (l+a_,_)(l+a_L_) E (vT*,_'_o, _) m [3.17]

CX)

m--0

For shot 146 conditions, T_,r(0)--14070 K and Tn_oo)=13910 K. Note that

T_r(t) is bounded below by T_r(oo) in this case. The time-dependence of

T_r(t), embodied in ¢(t) and ¢(t), can more easily be seen in the following

approximations to T_r(t ). For _--.0, ¢(t) and 8m(t ) are given by

¢(t) --_ m--0_] (v_'t_vM'°'_)m {1 - (2m+l)_[ texp'-_l _2 e..(m+_2)2C._t_/t}

and [3.1sl

m--I

with

texp ]_2
Om(t) _'_ (1-v_,_)-2v_,_[--'_" ' { me-ra'_t--/t_ v_,_(m+l)e-{m+l)2_--/t }

And for _oo, we have

1[ t ] _2 °° 1,(t) _-_ -_ _ m=OE (UT*,_¢_,_) m (m +1t2)
e-(m-_)2(_/t

and [3.19]

¢(t).._l_ v__.___[ t}_e__/t__ + _']°°
m----I

(V,aOl_ v_l_)m em(t)

with

1 t {le_mUC_t_/tV_l_e-(m+l)2C_t_/t8re(t) _'_ "_" [ -_exp } _2 - (m+l) }

From the parameters in Table 3.2, we have _V/_texp_--10"4m for shot 146
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Figure 3.4. Model Ag-MgO interface temperature, Tn, rr(t ), as a function of

time for different nondimensional Ag-film thicknesses,

-- _i/V/'_texp, where 8 is the Ag-film thickness and _¢_ its ther-

mal conductivity at the Ag-MgO interface pressure. This calcula-

tion is for shot 146 conditions, with a_1_----0.25, aM_ol_=0.03,

T_15320 K, T_14420 K, and T_o_3667 K (Table 3.2). From

these, we have Tn_(t_0)--14070 K and Tn,.r(t--c_)--13910 K, as

defined in the text. The circles represent _ -- 0.01 and _ --, 0 (the

latter from [3.18] in text, respectively, while the diamonds and

dots are for _¢-- 1.0 and _ --* c_ ([3.19] in text), respectively.

O
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conditions; consequently, with _<10-Sm, we have a (conductively) thin film

(_0.1). Using these estimates for shot 146 conditions, we display T_(t), cal-

culated for 3 different values of _ (1.0, 0.1 and 0.01), and a_l _ and aM, o__ for

the conditions of this shot (Table 3.3), in Figure 3.4. We also plot the 2

approximations (_--.0, [3.18], and _--.c_, [3.19])in this figure. Clearly, over the

entire range of _, Thor(t) lies within about 200 K of Thor(0). In particular, with

__,<0.1, T_r(t ) is essentially independent of time and approximately equal to

Tn, rr(C_). We note that Tn, rr(t) will approach T_ o only if a_o_>>l

(k_--*0 or k_o-.c_ ) and _<<1. So, assuming our estimate of a_ol_ is reason-

able, we have some justification for assuming that Tn, rr(t) is essentially constant,

and approximately equal to T_r(oo), during the experiment.

With these considerations in mind, we display an example fit to the data

for shot 146 in Figure 3.5, assuming that T_r(t ) is time-independent. Assuming

that our measurement errors are independently random, and normally-

distributed around the model that actually fits the data, the "best fit" to the

data is achieved through minimization of the functional X2(k), given by

X_(X) -- X2[X;r_,a_ao, rx_rr, W_T]

__ 1

- [o(×)]2 I×,=p(×,t)-Ixmod(X,t) ]2 [3.20l,

(e.g., Press et al., 1986), where a(X) is the uncertainty of the data at wavelength

X. Using a golden section (GS) search technique (e.g., Press et aL, 1986), we fit

Ixmod(X,t ) to Ixexp(X,t) by fixing r_ ax,_. o to known values (Table 3.4), and TM, o

to its value as given by [9] and the parameters in Table 3.4. Fixing T_ to this

value is justified by agreement with the results of greybody fits discussed below.

In addition, the fit results are not sensitive to T_ o in this case (Chapter I, §6.

and §7.). In this case, we vary r_, a_,o, rx_r and T,_ r to minimize X2(X). Even

though the fit using [3.20] will produce X-dependent optical parameters as the
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0

Figure 3.5. Spectral radiance data and model fit at 600 nm (part a) and 750

nm (part b) for shot 146. Parameters for the fits are given in

Table 3.4. The fit implies that the data are largely consistent

with a high, time-independent interface temperature (Tn_r---_20000

K for 146), strongly absorbing shocked MgO (Table 3.4), and the

estimated values for T_o (Table 3.2) used in the fits. It also
implies that the contribution from the shocked MgO dominates
that from Ag at the interface after --_ 100 ns.

O

O

D
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data allows, we really cannot quantitatively assess 1) the ability of the data to

resolve the wavelength-dependence of these parameters, 2) whether we have too

many or few free parameters (even though they are all physically well-

established), and 3) whether we have over- or under-estimated measurement

uncertainties, all because the data lack sufficient wavelength-resolution (i.e., we

have 4 wavelength-dependent parameters and data at 4 wavelengths). In fact,

all we can really resolve is the wavelength-averaged magnitude of the model

parameters that are potentially wavelength-dependent. If we had sufficient

wavelength-resolution, we could let all free parameters vary as allowed physi-

cally in k,t space, and invert for their best values. However, the resolution of

the data with respect to the wavelength-dependence of rx._, a_o, rxn_r is, at best,

poor. Keeping all this in mind, we display the results of this fit for shot 146

data in Table 3.4. Beyond the data resolution problem, we note that the poten-

tial wavelength-dependence of the parameters allowed to vary in the fit, (espe-

cially a_) is also dependent on our assumption of constant Thor(t). From [2]

and [3], we see that T_.r(t), ax_o. o and a_ control the slope and magnitude,

while the effective reflectivities and T_ influence only the magnitude, of

I_mod(k,t ). With a fixed ax_ao, and T_r>>T_, then, the fit is most sensitive to

T_. r and a_,_o; these should be best resolved. The results of this fit (Table 3.4)

suggest that shocked MgO at 200 GPa is .--- 50-100 times more absorptive than

at STP. Further, along with r_r (Table 3.4), a_ o may be wavelength-

dependent. Also, we note that the fits favor a much larger T_Tr (_-_20000 K:

Table 3.4) than Thor(0 ) calculated above for shot 146. This large value of TINT

implies that the Ag film is 1) is slightly porous (_8-10%) and/or 2) reshocked

at the Ag-MgO interface (Urtiew and Grover, 1974). Trapped gas at Ag-MgO

interface as radiation source (Boslough, 1985) seems unlikely since it was formed

under vacuum. However, we cannot rule out the influence of processes (e.g.,

reshocking) at the Ta-Ag interface on T_r. The decay of radiation intensity for
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Table 3.4. Radiation Model Parameterst for Shot 146.

Wavelength

(am) __ :_ rx_ (m__) rxncr

450 68 0.i 6300 0.9

600 82 0.3 7500 0.2

750 g7 0.i 4200 0.6

900 128 0.I 3800 0.5

Tncr= 20000 K, Ts_o-_ 3667 K, and rxrs----- 0.08 at all wavelengths in fit. rxFs

was calculated from nxx_a o _ 1.736 (Weast, 1979) and formula for effective nor-

mal spectral reflectivity given in text.

calculated from data of Touloukian et al. (1970c) and d=2.562 mm for shot 146

(Table 6).
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shot 146 is progressively faster going toward shorter wavelengths (i.e., from 900

to 450 nm: Figure 3.2). This can happen if T_r(t ) decays very strongly over

time, and/or the effective spectral absorption-coefficient increases toward

shorter wavelengths. We do not see a cross over of the radiation intensities at

shorter wavelengths, however, implying that a strong decay of Tact(t) to near

T_o does not dominate the time-dependence of Tn_r(t ). If T_r(t ) does decay

strongly, the magnitude of ax_ o would be less and its wavelength-dependence

different. In this sense, our assumption of constant Twr has given us an upper

bound on the magnitude of a_ o.

In context of our model, the effec.t_v_ normal _,_o_o1 _oeo_,,:+._ of +_^

boundary between any two (dynamic) target components i and ] is given by

(e.g., Siegel & Howell, 1981)

(n i-n j)2+

r x -------(nxi÷nxj)2 + (¢Oki-_-_g)Q)2

In this relation, n x and w x are the real and imaginary parts of the complex

index of refraction of the material, and, as with all the other optical parameters,

they are both potentially X-dependent. w x is also known as the electromagnetic

extinction coefficient. The values of rx._ from the fit imply that the refractive

index of MgO changes very little upon shock compression up to 200 GPa. This

is consistent with the low-pressure data of Vedam & Schmidt (1966), which

imply that the refractive index of MgO actually decreases very slightly

(,-_I.SX10-_/GPa) because of the decrease in electronic polarizability, which

dominates the intrinsic increase in refractive index with pressure. The slightly

higher value of r_ at 600 nm is clearly warranted by the data (see below), and

may represent a dependence of n_ on wavelength. Noting that

--47rwx,,,,o/X (e.g., Siegel & Howell, 1981), where _,o is the extinction

coefficient of shocked MgO, our results imply that w_-_10 -3, also consistent

@
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with a small value for rx_. The values of r_ r in Table 3.4 may be compared

with r_600 nm) -_ 0.9 at STP, calculated with nx_ -- 0.18, wx_ _ 3.64 at 600

nm (Svet, 1965) and n_ o --1.73{} (Table 3.4). Since wx_o appears to be too

small to affect rxnvr significantly, the decrease of rxm.r at high pressure implied by

the fit may represent a change mainly in nx_ and/or wx_ with pressure.

The strongest result of this fit is that MgO is significantly more opaque at

high pressure. This is consistent with the results of Gaffney & A_hrens (1973),

who observed a wavelength-independent increase in opacity at 46.5 GPa in

MgO. This change in opacity may be due to shock-induced defect structures,

since MgO did not recover its transparency_ . during .......rele_._- .W_.,.th +_..._.....v.._._.,_:_'l_

exception of A120 3 (Bass et al., 1987; but see Urtiew, 1974), all initially tran-

sparent materials studied so far (e.g., LiF: Kormer, 1968; CaA12Si208:

Boslough et al., 1986) lose some transparency during shock compression. We

note that a similar fit to shot 145 data is qualitatively consistent with that for

shot 146 data.

To get more precise estimates of the optical parameters, we need further

constraints on _r(t) and Tm_t ). One possible means to this is the use of two

recording systems during the experiment, one set to record the initial intensity

of the interface radiation, and the other set to record the expected intensity of

the sample radiation. In this way the early history of the radiation intensity

should constrain the early time-dependence of _x_r(t) and T_rr(t), before the

optical properties of shocked MgO can significantly affect the observed radiation

intensity.

Having some understanding of the time- and wavelength-dependence of the

observed radiation intensity, we can, with some justification, fit the greybody

relation

I)_gb(),,t ) _ _fit(t) Ixpi[k,Wfit(t)] [3.21]
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at a given time, which we designate tr, to the end of the observed radiation his-

tories and find the effective emissivity and temperature of shocked MgO. The

choice of t r is motivated by the calculated shock-wave transit time through the

MgO, but is not critically dependent on this choice, as we show below.

To fit Ixgb(),,t ) to the data, we again use the X 2 measure. In this case, it is

given by

x2(tr)-- x2[tr;tfit,Wfit]

----- E { 1 { ixexp(X,tr ) _ _fit(tr ) ixpi[X,Tfit(tr) ] }2} [3.22].[°(×)]2

Unlike [3.20], the sum is now over all wavelengths observed in the experiment.

On this basis, _exp(tr) and Texp(tr) represent the values of _fit(tr) and Tfit(tr) that

minimize x2(tr). Since the fit is with respect to wavelength, the value of texp(tr)

represents a wavelength-average of _(),,tr). Since x2(tr) is a nonlinear func-

tional of temperature, we find its minimum numerically using 1) GS search, as

above, and 2) the method of Levenberg as formulated by Marquardt (LM). See,

for example, Press et al. (1986), for details on both of these methods. To obtain

starting values of _fit(t) and Tfit(t ) for the nonlinear fit, we use Wien's approxi-

mation to I×pl(k,T ) in x2(tr), which follows from Ixpl(k,T) in the limit

exp(C2/kT)>> 1 , i.e.,

2C1 e -C_/)'T_t) [3.23]
IXwgb(X,t ) ---_ _fit(t) Ixwi(X,t) -- _fit(t) "7-

The relative error incurred in approximating Ixp I by I),wi is equal to

exp(-C2/XT); this approximation is accurate to within 1% for XT<3X10-_m-K

(Siegel & Howell, 1981). Since we can fit Wien's relation to the data via linear

least squares, we can solve for _fit(tr) and Tfit(tr) directly (i. e., without iteration).
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We argue above that the radiation intensity at the end of the record likely

represents only that of shocked MgO. In this case, from relations [3.1] and [3.2],

we also see that, with _x_r(k,t_tr_texp)_-_._0<<_xM, o(k,tr),

I_mod(k,tr)_ e_(tr) I:_pl(k,T,4,o) [3.24]

with

_x_o(tr) _ (1 - rxFs) (1 - rx_ ) (1 + rx_cre-aX_) (1 - e-a_) . [3.25]

Recalling that rx_s is independently established (Table 3.4), and taking the

values of rx_ , a¢_ o and rx_rr established by the model fit, we may "correct" the

radiation data and fit for _exp(tr) Texp(tr) as above. This is a somewhat crude

way of correcting for apparent k-dependence of ex_,o from the fit using [3.20]

discussed above. In principle, this should allow us to fit for Texp(tr) alone, but

we allow _exp(tr) to vary because we already set _exp(tr) -- 1 in one of the GS fits

(i.e., out of curiosity).

Unlike the previous fit, we have 4 data and 2 parameters Cat least for shots

145 and 146) in the greybody fit. However, we are still confined to wavelength-

average values for _exp(tr). We present the results of both the corrected (using

[3.24]-[3.25]) and uncorrected fits in Table 3.5, and plot the uncorrected fit for

shots 145 and 146 in Figures 3.6a and 3.6b, respectively. The results for shot

166 (Table 3.5) do not include a LM fit because the method requires at least 3

data points for a fit to 2 parameters. The uncertainties associated with the GS

fits represent measurement uncertainties mapped into uncertainties for _exp(tr)

and Texp(tr) through use of [3.26]-[3.29] given below. However, the uncertainty

associated with each LM fit is the standard deviation of that fit. Roughly

speaking, the values of x2(tr) given in Table 3.5 can be compared to the number

of data minus the number of parameters in the fit to judge its "goodness." On

this basis, the fit for shot 145 is not as "good" as that for 166, and especially

146. The experimental uncertainties for shots 166 and 147 are much lower, of
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Table 3.5. Greybody Fits to Radiation Data at t r.

$

$

Shot Parameter

(tr)

166 _exp

(750,900)§ (285 ns)

Texp

Uncorrected

Wien GS LM GS

(tilt=l)

! .02 1.00

(0.22) (0.22)']"

3046 3056

Corrected

Wien GS LM GS

(_tit---1)

(285 ns)
X 2

147 Tex p

(600) (210 ns)

145

(all)

146

(all)

_exp

(21ons)
Texp

(210 ns)

X 2

_exp

(2oo_)
Texp

(2oons)
X 2

(12o) (12o)
0.001 0.0005

2981

(120)

0.41 1.02 0.64

(0.80) (0.80) (0.18):]:
3739 3174 3352 3186

(480)(355) (200)
9.68 7.29 8.70 7.33

0.88 1.04 1.17

(0.69) (0.69) (0.17)
3735 3615 3530 3639

(410) (3851 (801 (390)
1.64 1.41 1.35 1.45

1.23 " '_1.10

(0.22) (0.22)
3054 3062 3081
(115) (120) (120)

0.02 0.001 0.0005

3071

(130)

0.50 1.02 0.75

(0.80) (0.80) (0.21)
3756 3281 3372 3292

(355) (485)(375) (220)
9.69 7.58 8.77 7.62

1.07 1.21 1.42

(0.69) (0.69) (0.20)

3757 3663 3549 3784

(415) (395)(100) (420)
1.64 1.46 1.36 1.70

$

$

- Golden section search fit. Uncertainties represent experimentally-based

uncertainties.

- Levenberg-Marquardt fit. Uncertainties represent standard deviations of

corresponding fit.

- Wavelengths used in fit.

0
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Figure 3.6. Greybody fits to uncorrected shot-145 data (part a) and shot-148

data (part b) as a function of wavelength for _exp(tr) and Texp(tr).

The size of the data rectangles represent experimental uncertainty.

Note the deviation (i.e., outside experimental uncertainty) at 600

nm of the spectral radiance below the various fits. This observa-

tion is substantiated as a larger value of r_(600 nm) (Table 3.4) in

the fit of Figure 6b at 600 nm.

O

Q

9



- 219 -

Wavelength (nm)

E

QJ
(J

°g,,q

c_

w.J

(J

{D

C

C I I r
)0 600 800 I000

Wavelength (nm)



- 220 -

Q

0

0

O

course, mainly because they are based on only two wavelengths and a single

wavelength, respectively. For shots 145 and 146, within the fit uncertainty, the

LM and GS results agree (Table 3.5). Also, there is, within uncertainty, no

difference between the corrected and uncorrected results (the corrected-data

results are slightly closer to the calculated values of T_o as listed in Table 3.2).

Except for the shot-145 LM results, the effective emissivities of the LM and GS

fits are El, an unphysical result. However, the associated data and fit uncer-

tainties easily allow the effective emissivities to be less than unity. Also, as

noted by Boslough & Ahrens (1986), _fit is much more sensitive to data scatter

(in k and/or t), whether due to uncorrected wavelength-dependences in the

data, or experimental measurement errors. This results from the functional

form of Ixgb, as can be seen from the following relations:

_Tfit OlnTfit b'Ixgb [3.26]
OlnIxgb

and

where

and

{ c_lnixg b } b'IXgb [3.27],
_fit T_,), Ixgb

_.,,x (1+ _)ln(1+ _) < 1 , .>0 [3.281,

81n_fit
I 1 [3.29],

OlnIx_ b I T_,X

(note that ), and til t are fixed in this last relation). From these relations we see

O
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that a given variation of Ikexp , and hence Ix_ b in the fit, will have a larger

impact on efit than T, i.e., 6Tfit/Tfit<S_fit/_fit for all ocI_,gb/Ixgb . Consequently, it

is not surprising that _exp(tr) could be greater than unity with any significant

scatter, if not constrained to be less than or equal to unity in the fit.

The fits displayed in Figures 3.6a-b for shots 145 and 146, respectively,

both show that the 600-nm data lie significantly below the fits. This is also sug-

gested by the model results displayed in Figure 3.5 for shot 146, where

r_(800 nm)--_0.3. This deviation probably does not represent systematic error,

since we have never seen anything like it in the data from other experiments of

this nature. That it reflects a property of shock-compressed MgO is supported

by the radiation spectrum of shock-compressed MgO at 60 GPa (Schmitt &

Ahrens, 1984), which is nonthermal and displays a sharp drop in intensity below

_-_650 nm, possibly due to k-dependent absorption and/or reflectivity. This

possibility is consistent with the results of the fit displayed in Table 3.4. This

apparent nonblackbody trend in the MgO data is one possible cause of "data

scatter" leading to nonphysical values of efit, as discussed above.

That our choice of tr, within a given window of time, is not essential to our

results can be shown by fitting a window of time around t r and displaying the

consequences. We do this for shot 146 uncorrected data and display the results

in Figure 3.7. As evident, the fit is essentially time-independent 10 ns on either

side of t r This is true for the fits to shots 166 and 145 as well.

§4. Discussion

In Table 4.1, we list the greybody fit and uncertainties, along with the cal-

culated shock-wave velocities, shock-transit times, pressure and temperature, for

each experiment. The uncertainties of calculated quantities are based on a

propagation of the parameter uncertainties listed in Table 3.1 through the



- 222 -

Q

0

Figure 3.7. Greybody effective emissivity, _exp(t) (part a), and temperature,

Texp(t) (part b), as a function of time near the end of the radiation

history for shot 146. The fits are essentially time-independent in

this time window centered on t r.

$

O

$



- 223 -

{N/I

*tmU

O

190

_en

t r

2OO 210

Time (ns)

0
0
aD

E-

J I L.

Wien ........

GS, _fit -- 1

o- o- o- o- o- o- o- o- o- o-p-,o.._.__ o_ o._,__

o t r0

_-I l F
190 200 210

Time (ns)



- 224 -

Q

$

calculation of each quantity. The values of _exp(tr/ and Texp(tr) in Table 4.1 are

those for the GS fit with efit and T_t variable, which we choose as representative

of the other estimates, within experimental uncertainties. The average uncer-

tainty of T,a o is somewhat higher than, but relatively close to, the average

experimental uncertainty of Texp(tr). Note that the calculated shock-wave tran-

sit times through MgO are, on average, about 40 ns less than the duration of

each experiment, as defined by a break in the radiation history about 240 ns

after the rise in radiation intensity (see Figures 3.2 and 3.3, and compare with

tst for shot 146 in Table 4.1 / due to release of MgO. This seems to be a real

discrepancy; experimental times should be resolvable to within .-I-5 ns. We have

no explanation at this point.

The good agreement between the temperatures inferred from the radiation

data and calculation using [3.9] implies a posteriori that the assumptions that 1)

MgO compresses as an elastic fluid, 2 / MgO does not change phase during shock

compression, and 3 / Cv--3nR for MgO, are valid for the range of pressures

covered by our experiments. The first assumption implies that the temperatures

achieved by MgO during shock compression in the pressure range covered are

governed by its bulk elastic properties and lattice specific heat. At much lower

pressures (,_60 GPa/, MgO radiates nonthermally (Schmitt & Ahrens, 1984),

which is also consistent with these calculations; T_, o in this pressure range is

_500 K.

No variation of cv and/or "_ is reflected in the uncertainties for T_o listed in

Table 4.1. Any variation of these parameters would, of course, only increase

the uncertainty of T_,o, which already encompasses that of Texp(tr). In other

words, unless we "assume" that we can actually calculate T_o much better

than indicated by its uncertainties listed in Table 4.1, Texp(tr) cannot place

bounds on a possible variation of cv or "_, because the uncertainty of T_o is

larger than that of Texp(tr/. With this in mind, we can alter the values of cv

O
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Table 4.1. Experimental Results and Model Estimates.

$

Q

Shot

166

147

145

146

Experimental Results

p d Vimp _exp Wexp tr

(Mg/m s) (mm) (kin/s) (K) (ns)

3.562 3.468 5.73 1.18 3081 285

(0.002)1 (0.005) (0.04) (O.22) (120)(10)

3.595 2.513 5.87 1.00 3071 205

(0.002) (0.002) (0.03) (0.33) (130)(10)

3.577 2.621 6.04 1.03 3281 210

(0.002) (0.003) (0.03) (0.79) (375)(10)

3.587 2.562 6.36 1.19 3663 200

(0.002) (0.004) (0.03) (0.69) (395)(10)

Model estimates

U tst P_o

(km/s) (ns)(GPa)

TMgO

(K)

12.10 286.6 174.0 2913

(0.14) (3.4) (2.6) (415)

12.22 205.7 181.1 3028

(0.14) (2.4) (2.3) (430)

12.38 211.7 187.9 3257

(0.15) (2.5) (2.6) (445)

12.68 202.0 203.1 3667

(0.15) (2.5) (2.8) (405)

?

P

d

Vimp

U

tst

P_

TMIo-

- measurement uncertainty.

- STP bulk density.

- Sample thickness.

- Impact velocity.

- Calculated shock wave velocity.

- Calculated transit time of shock wave through MgO.

- Calculated pressure of shock-compressed state of MgO.

Calculated temperature of shock-compressed state of MgO.

B
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and ff given in Table 3.1 and obtain other values for T_ o than those given in

Tables 3.2 and 4.1. As discussed above, T_o is much more sensitive to varia-

tions in cv than "_. For example, using the conditions of shot 146, if we first

vary %, and then Cv--3nR/M, of MgO (Table 3.1) by =k10%, we get a +20 and

=k 350 K variation in T,,_o, respectively.

We display the experimental results in Figure 4.1 along with temperatures

inferred from radiation data for SiO 2 (Lyzenga et al., 1983) and Mg2SiO 4

(Lyzenga & Ahrens, 1980). The continuous curve is the calculated locus of

shock-compressed states for MgO, and the dot-dashed curve is a Lindemann

estimate of the melting curve of MgO, calculated from the parameters listed in

Table 3.1 by assuming the compression of solid-MgO along the melting curve is

equal to that along the MgO shock-compression curve at the same pressure

(Chapter I, §4.). Also displayed are the mantle temperature profiles of Brown &

Shankland (1980) and Stacey (1977), which are together representative of the

range of models currently considered plausible. From the agreement of data

and calculations, and in light of the Lindemann estimate, we conclude that

MgO does not change phase below 200 GPa. Not shown in Figure 4.1 is the

intersection of the model shock-compression and Lindemann curves for MgO at

265 GPa. On the basis of the "ideal" behavior exhibited by MgO up to this

point, we speculate that it won't melt below _ 265 GPa. Also, if MgO has an

effective emissivity near unity between 170 and 200 GPa, as our results suggest,

then the observations of Kondo & Ahrens (1983) and Schmitt & A.hrens (1984),

as well as the models of Svendsen & Ahrens (1986), imply that MgO probably

does not localize thermal energy below this pressure. Any localization should

catalyze melting or other energetically favored transitions at higher pressures.

Shock-induced deformation in MgO is localized (Chert et al., 1975) in the form

of microfracturing up to 60 GPa, but apparently this has no impact on the tem-

perature field, in contrast to other oxides such as SiO 2 (Schmitt & Ahrens,

@
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Figure 4.1. Experimental and model pressure-temperature shock compression

results for MgO. The Lindemann melting and shock compression

curves for MgO are calculated from the parameters for MgO in

Table 3.1. The Mg0 experimental results are represented by rec-

tangles. Also shown are the mantle temperature profiles of Stacey

(1977) and Brown and Shankland (1980), as well as the experimen-

tal results of Lyzenga et al. (1983) for SiO 2 and Lyzenga and

A.hrens (1980) for Mg2SiO 4. Note that the MgO experimental

results are quite consistent with the model curve and well-below

the Lindemann estimate.

@
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1984). Apparently the energy dissipated in localized deformation in shocked-

MgO is efficiently transported away before an energy density sufficient to effect

melting or solid-solid transformation is attained (Svendsen & Ahrens, 1986).

What are the processes responsible for the transition of MgO from predom-

inantly a nonthermal to a thermal radiator {with e--*l) between 60 and 170

GPa? The apparent change in electrical resistivity of shocked-MgO from _10 3

to -_10 12"m above 92 GPa (A.hrens, 1966) is consistent with either 1) closure of

the valence-conduction electron band-gap, or 2) proliferation of initially present

or shock-induced (Gager et al., 1964) defects possessing free electrons. However,

since the MgO band-gap appears to increase in the pressure range of our experi-

ments (Liberman, 1978; Bukowinski, 1980; Chang and Cohen, 1984), we specu-

late that, at high pressures above _-_100 GPa, defects in thermal equilibrium

with MgO are responsible for the observed radiation from MgO.

§5. Summary

We use a model of conductive and radiative transport among the target

components of our experiments to interpret the radiation history of the target

in terms of its optical and thermal properties, and infer the shock-compressed

temperature of MgO. On this basis, we have the following results:

Q The model for conduction between the Ta driver, Ag film and MgO implies

that the Ag-MgO interface temperature, T_.r(t), will be approximately con-

stant on the time scale of the radiation observations (.--_200 ns) for values

of the nondimensional interface thickness _ less than 0.1 (Ag-film thickness

8_ 1000 nm) or greater than 1.0 (8>10/_m). Estimates of this thickness

for the Ag film of each experiment imply that _<0.1 for all experiments.

The model implies that Ta_r(t) cannot decrease by more than about 200 K

in any of the experiments {regardless of the value of _) because of the large

D
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thermal-inertia mismatch between Ag and MgO.

. Assuming Trot(t) is independent of time, a fit of the radiative-transport

model to MgO radiation-history data implies that shocked MgO is _-_100

times more absorbing (a_ .-_ 6300, 7500, 4200 and 3800 m -1 at 450, 600,

750 and 900 nm, respectively, at 203 GPa) than unshocked MgO in the

pressure range covered by the experiments. The coefficient of absorption

for shocked MgO and the effective normal spectral reflectivity of the

shock-front and Ag-MgO interface are wavelength-dependent in this fit

(Table 3.4). Also, Tn_r from this fit is much higher (_-_ 20000 K) than

estimated from ideal-release calculations for solid Ag-film, implying that

the Ag film may be slightly porous (_10 %) and/or reshocked. Independ-

ent constraints on T_.r(t ) and _x_rr(t) through modification of the experi-

ment to record both interface and sample radiation intensities are needed

to pin down these possibilities.

@

@

@

o The radiative transport model fits imply that greybody fits to the end of

the radiation histories for each experiment constrain the effective normal

(wavelength-averaged) emissivity and absolute temperature of MgO. Using

two different fitting techniques, we establish, within experimental uncer-

tainty, the robustness of our fits. The greybody fits agree well with model

temperature calculations, implying that, between 170 and 200 GPa, MgO

compresses as an elastic fluid with a Dulong-Petit specific-heat value. The

agreement between Texp(tr) and T_, the latter calculated assuming no

phase transformations, as well as the values of _exp(tr) (_-_0.1-1, Table 3.5),

together imply that MgO does not change phase below 200 GPa. In addi-

tion, since the calculated shock-compression curve and Lindemann melting

curve of MgO intersect at 265 GPa, we speculate that it will not melt



- 231 -

below this pressure.

. Comparison of the experimental results for MgO with those of SiO 2 and

Mg_SiO 4 shows that the shock-compressed temperatures of Mg2SiO 4 lie

between those of SiO 2 (below) and MgO (above), analogous to the density-

pressure relations between these materials, and emphasizing the role of the

bulk elastic properties of these materials in controlling the first-order mag-

nitude of their respective shock-compressed temperatures. Comparison of

the extrapolated MgO shock-compression curve with a range of possible

mantle temperature profiles implies that shocked MgO is colder than the

lower mantle by _ 1000-1500 K at the same pressure.
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Abstract

Optical radiation from shock-compressed crystal CaMgSi20 8 (diopside) con-

strains crystal CaMgSi20 6 Hugoniot temperatures of 3500-4800 K in the 150-170

GPa pressure range, while glass CaMgSi206, with a density 87% that of crystal

CaMgSi20_, achieves Hugoniot temperatures of 3600-3800 K in the 105-107 GPa

pressure range. The radiation history of each of these materials implies that the

shock-compressed states of each are highly absorptive, with effective absorption

coefficients of _500-1000 m -1. Calculated Hugoniot states for these materials,

when compared to the experimental results, imply that crystal CaMgSi20 _

Hugoniot states in the 150-170 GPa range represent a high-pressure phase

(HPP) solid (or possibly liquid) phase with an STP density of _4100:f=200

kg/m 3, STP Gr_neisen's parameter of _1.5:h0.5 and STP HPP-LPP specific

internal energy difference, _ei_-a , of 0.9=h0.5 MJ/kg. These results are con-

sistent with a CaSiO3-MgSiO 3 perovskite high-pressure phase assemblage. For

glass CaMgSi2Os, we have the same range of HPP properties, except that /kei _-a

is 2.3:i:0.5 MJ/kg, a strong indication that the glass CaMgSi20 8 Hugoniot states

occupy the liquid-phase in the system CaMgSi20 s. Comparison of the

pressure-temperature Hugoniot of crystal CaMgSi20 e with the Hugoniots of its

constituent oxides (i.e., Si02, CaO and MgO) demonstrates the primary

influence of the HPP STP density of these materials on the magnitude of the

temperature in their shock-compressed states. The crystal Di pressure-

temperature Hugoniot constrained by the experimental results lies at 2500-3000

K between 110 and 135 GPa, within the plausible range of lowermost-mantle

temperature profiles.

O

@
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§1. Introduction

Mg-Fe oxides and/or silicates are currently believed to dominate the com-

position of the earth's mantle. CaMgSi2Os, which in mineral form is known as

diopside, represents one of several pyroxene compositions relevant to investiga-

tions of composition of the earth's mantle, and is the only natural pyroxene to

form large, transparent single crystals suitable for shock-temperature investiga-

tion. The possibility that the earth accreted inhomogeneously (e.g., Turekian

and Clark, 1969), or strongly differentiated during core formation implies that

certain regions of the mantle, such as D", may be composed of oxides and/or

silicates of much more refractory elements, such as Ca and/or A1. A number of

previous static and dynamic experimental efforts (e.g., Liu, 1978, 1979a;

Svendsen and Ahrens, 1083; Boslough et al., 1084; Boslough et al., 1986) and

modeling efforts (e.g., Ruff and Anderson, 1980) have directly or indirectly

addressed this issue. In particular, calculations indicate that CaMgSi20 s (Di)

could be one of the earliest phases to condense out of the solar nebula (Gross-

man and Larimer, 1974), and so may be a major participant in inhomogeneous

accretion. In this paper, we use the shock-induced radiation from Di to con-

strain its Hugoniot temperature. Combining these constraints with previous

work on the mechanical response of Di to shock compression, we place con-

straints on the pressure-density-temperature equation of state of the high-

pressure phase(s) (HPP's) of Di. The high-pressure (_ 50-80 GPa: Svendsen

and A.hrens, 1083) shock-compressed states of crystal Di are likely to represent

an assemblage of CaSIO3-MgSiO 3 perovskites (Liu, 1979b).

§$. Experimental

We conducted the experiments on a two-stage, light-gas gun (e.g., Jeanloz

and Ahrens, 1980a; Figure 2.1). In these, a lexan-encased tantalum (Ta) flyer

plate, accelerated to velocities between 4.7 and 6.1 km/sec (Table 5.1),

Q
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Figure 2.1. Geometry of the light-gas gun radiation experiment after Boslough

(1984). The projectile, shot through the barrel, impacts the sam-

ple at velocities between 5.7 and 6.4 km/sec. Radiation from the

sample is bent 90" by the mirror, travels through the objective

lens, and is divided up by the three beam splitter arrangement

among the 4 channels of the pyrometer. The resulting signals

from the photodiode in each channel are monitored by oscillo-

scopes and LeCroy transient digital recorders.
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impacted a 1.5 ram-thick Ta driver plate in contact with an approximately 2

mm-thick (100)-oriented, transparent crystal Di samples or 4 mm-thick, trans-

parent glass Di samples (Table 5.1). We covered the free surface of the samples

with an aluminum mask to avoid observing radiation from the target's edge.

Radiation from the target reflects from a mirror, propagates though an objec-

tive lens, and is directed by a (dichroic / pellicle beam splitter and two half-

silvered beam splitters into 4 detectors filtered at nominal wavelengths of 450,

600, 750 and 900 nm. We recorded the signal from each detector with a Tek-

tronix 485 single-sweep oscilloscope and a LeCroy (model 8081) 100-MHz tran-

sient recorder.

The densities of crystal Di samples (Table 5.1) agree well with the ideal

value of 3277 kg/m 3 (Robie et al., 1978). This is consistent with the microprobe

analyses of our sample materials, given in Table 2.1. The glass Di samples are

about 13.6_ less dense than the crystal samples; this is consistent with the den-

sity of glass Di used, for example, in spectroscopic studies (Binsted et al., 1985).

As in previous studies (e.g., Lyzenga, 1980; Boslough et al. 1984), we

vapor-deposited 500-1000 nm of silver (Ag / on the sample and then placed the

Ag "film" in contact with the Ta driver plate to minimize radiation from an

otherwise rough driver plate-sample interface. We expected this Ag film to

absorb any radiation from the Ta-Ag interface, heat up much less than a

mechanical Ta-CaMgSi20 8 interface (Urtiew and Grover, 19741, and contain no

trapped gas that could also contribute to interface radiation (Boslough, 1984).

§3. Data Analysis

Our data set consists of six experiments: four on diopside (Cah/IgSi2Os, Di)

single-crystals (140, 141, 169 and 170, Table 5.1/, and two on CaMgSi20 8 (Di)

glass (196 and 197, Table 5.1 / . We record the radiation intensity from the

@
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Table 2.1. Microprobe Analyses of Starting Materials.

O

Shot 140,141t 169,170_ 196,197_

Na20 0.38* 0.48 0.01

MgO 17.40 17.63 15.75

Al20 3 0.36 0.22 0.03

SiO_ 55.74 55.32 58.48

CaO 25.15 24.78 26.07

TIO_ 0.02 0.11 0.00

Cr203 0.07 0.48 0._

MnO 0.08 0.04 0.01

FeO 0.82 0.96 0.00

Total 99.97 99.68 100.37

En 48.4 49.0 49.0

•. v ,,v.o 4_.o 51.0

Fs 1.4 1.5 0.0

I

t Diopside from DeKalb, NY, supplied by S. Huebner, USGS, Reston, VA.

_: Russian diopside, supplied by Gem Obsessions, San Diego, CA.

§ Diopside glass, supplied by G. Miller, Caltech, and G. Fine, Corning Glass Co.

* weight. %
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target as a function of time at the wavelengths stated above. In Figures 3.1

and 3.2, we display examples of these data at 750 nm. The data shown in Fig-

ure 3.1 are from crystal Di (shot 141, Table 5.1), while those shown in Figure

3.2 are from glass diopside (shot 197, Table 5.1). These radiation histories are

representative of those at all other observed wavelengths and in all other experi-

ments. With the known radiation intensity of a standard lamp (Boslough, 1984)

at the observed wavelengths, we transform these raw data into experimental

spectral radiation intensities (in the form of spectral radiance) as a function of

time. The radiance data for all experiments are listed in Table 3.1.

As stated above, the target consists of a Ta driver-plate, Ag film layer and

sample layer. Radiation from the target is first observed when the shock wave

compresses the Ag film at the Ag-sample interface (to, Figure 3.1 or 3.2). As

shown most clearly in Figure 3.2, the radiation intensity in all experiments rises

sharply to a peak value, and then as the shock wave propagates into the sam-

ple, the intensity decays almost as quickly to a time-independent magnitude

reflecting that of the shocked sample. Since the Ag film is almost certainly

much hotter than the sample over the time scale of the experiment (Boslough,

1984; Svendsen and Ahrens, 1987), the strong decay of the initial radiation

intensity is most likely due to shock-induced opacity of the shocked sample

(Boslough, 1985). With the possible exception of Al20 3 (Bass et al., 1987), all

initially transparent materials studied so far (e.g., LiF- Kormer, 1968;

Ca.Al2Si20 s" Boslough et al., 1986) lose some transparency during shock

compression. In the present case, the thermal radiation from Ag at the Ag-

sample interface is apparently strongly absorbed by the shocked sample such

that observed radiation intensity is quickly dominated by the sample intensity

(Boslough, 1985). Hence, we observe a fast decay of the initial high intensity

and a subsequent time-independent radiation intensity displayed in Figures 3.1

and 3.2. To demonstrate these considerations from a model viewpoint, we
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Figure 3.1 Radiation intensity versus time record for shot 197 on diopside

glass at 750 nm. The time t--0 marks the arrival of the shock-

front at the Ag-Di interface, while t s marks the point in the radia-

tion history (with intensity Vs) used to determine spectral radiance

of glass Di at this wavelength.
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diopside single-crystal. Duration of sample radiation intensity is

much shorter than that of glass experiment shown in Figure 3.1

because crystal sample is thinner (Table 5.1).
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Shot 450

(rim)
140

Spectral Radiance
(kW/m2-sr.nm)

600 750 900

(nm) (nm) (nm)
3.15 3.09 2.87

(0.59) (0.45)(0.81)

141 6.14 5.38 6.06 5.71

(1.21) (1.00) (0.77)(0.93)

169 5.11 6.58 6.53 5.49

(0.18) (0.31) (0.33)(0.31)

170 0.82 1.56 2.34 2.29

(0.13) (0.17) (0.26)(0.26)

196 1.35 2.14 2.96 3.24

(0.48) (0.33) (0.42)(0.51)

197 1.37 3.18 3.46 3.74

(0.41) (0.39) (0.50)(0.56)

Fits

Parameter(tr) Wien GSt LM:[: GS (_fit_l)

_exp(140 ns) 0.65 0.59 0.56
(0.37) (0.37)(0.23)

Texp(140 ns) 4152 4215 4270 3803
(351) (364)(356) (293)

X 2 0.14 0.06 0.06 0.05

_exp(145 ns) 0.71 0.65 0.75
(0.34) (0.34) (0.11)

Texp(145 as) 4737 4782 4643 4372
(346) (356)(153) (297)

2
X 3.44 3.i3 3.05 3.55

_exp(198 ns) 0.91 0.86 0.86
(0.27) (0.27) (0.18)

Texp(198 ns) 4522 4552 4555 4428
(263) (268)(178) (251)

X 2 0.30 0.21 0.21 0.48

_exp(170ns) 1.01 1.04 1.06
(0.25) (0.25)(0.17)

Texp(170 ns) 3539 3508 3498 3539
(143) (141) (90) (143)

X2 1.61 1.43 1.42 1.52

_exp(485 ns) 1.09 1.23 1.63
(0.44) (0.44) (0.26)

Texp(485 ns) 3695 3585 3422 3711
(243) (231) (100) (247)

X 2 1.99 1.20 1.03 1.72

_exp(475 ns) 1.51 1.51 1.38
(0.39) (0.30) (0.22)

Texp(475 ns) 3610 3610 3663 3866

(208) (208) (96) (239)
X2 0.50 0.50 0.46 1.23

t - Golden section search fit. Uncertainties represent experimentally-based uncertainties, and

this fit is unweighted.

- Levenberg-Marquardt fit. Uncertainties represent standard deviations of corresponding fit,
and this is a weighted fit.
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represent the observed radiation intensity, Ixexp()_,t), in terms of a model inten-

sity, I),mod()_,t), as a function of wavelength ()_), and time after the onset of radi-

ation from the target, t, i.e.,

Ikmod()_,t) = _(t)I)_pi[)_,T,(t)] -{- _(t) Ikpl()_,Ts) [3.1].

In [3.11, T s is the shock-compressed (Hugoniot)sample (S) temperature assumed

homogeneous, uniform and constant, and T,(t) is the temperature of Ag at the

Ag-sample interface (I), which may be time-dependent (Grover and Urtiew,

1974). Further,

_(t) -- [1-r_] rxus(t ) [1-r_] r_(t) II-r_] [3.2]

_(t) _- [1-rx_ ] rx_s(t ) [1-r_._] [l+r_rr r_(t)l [1-r_(t)l [3.3]

are the effective normal spectral emissivities of the Ag at the Ag-sample inter-

face and shocked sample, respectively, while r_,s, r_._ and rx_ r are the effective

normal spectral reflectivities of the unshocked sample (US) free-surface, shock

front and Ag-sample interface, respectively. Also,

rxus(t ) ---- exp[-a¢_ (1-t/texp) ] [3.4]

and

rat) - exp[-a; t/re,p] [3.5]

are the effective normal spectral transmissivities of unshocked sample and

shocked sample layers, respectively. In [3.4] and [3.5], aCus and a_ are nondi-

mensional forms of the effective normal spectral coefficients of absorption in the

unshocked and shocked samples, respectively, given by

a_ ------a_s (U-vs)tex p

a_us ---- axu s Utexp

and

[3.6]

[3.7].
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Note that texp_----d/U is the experimental time scale, U is the shock wave velocity

in the sample, d is the initial thickness of the sample layer in the target, and v s

is the shock-induced material velocity of the shocked sample• Lastly, we have

C1
Ixpl(k,T)

k 5 [eC,/XT _ 1 ]

(with C 1 -_ 1.19088X10-16W'm _ and C 2 _---1.4388X10-_m'K) as the Planck

function.

If we assume the shocked sample is strongly absorptive, we have a_s _..1 or

a_l/(d-vstexp) from [3.6], and so r_s(t)_0 from [3.5]. In this case, _(t)--_0

from [3.2], and

_xs(t)--_xs_---(1 - rxFs)(1 - r_._) [3.8]

Putting these results into

[3.9],

wavelength, as

from [3.3]. Note that e_s is then time-independent•

[3.1], we have

IXmod(_k,t)--_Ikmod(_k) _ (1 - rx,,s)(l - r_) Ixpl(X,Ts)-- _ Ixpi(X,Ts)

wmcn a constant radiationrepresents intensity at a given

observed in the data (Figures 3.1 and 3.2). The minimum values of a_ required

by the condition a__fl/(d-vstexp) may be calculated from the experimental

parameters listed in Table 3.1. We list the results of this calculation in Table

3.1, where we see that, for crystal Di, a_700-1100 m -1, while for glass Di, we

have a__.420 m -1.

As the shock wave reaches the free surface of the unshocked sample (t s in

Figure 3.1 or 3.2), the radiation radiation intensity again becomes transient, and

the experiment is over. Since we want to infer the shock-compressed tempera-

ture of the sample from the shock-induced sample radiation, and since [3.9] is

most likely valid for t_-texp, we use the magnitude of the radiation intensity at

tex p (Table 3.1, just prior to t_ Figure 3.1 or 3.2) and each wavelength to

@
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constrain the temperature of the shocked sample. Assuming the spectral

reflectivities rxFs and r_._ are independent of wavelength, [3.9] is analogous to the

greybody relation, i.e.,

Ixsb(k,texp) --_ _fit(texp) Ikpl(k,Tilt) [3.10].

Comparing [3.9] and [3.10], we see that _ilt(texp) should constrain the value of

(1-rxFs)(1-r_). The value of tex p reflects the calculated shock-wave transit time

through the sample, but is not critically dependent on this choice (Svendsen and

A.hrens, 1987) as long as the optical parameters of the unshocked material (e.g.,

a_us) are not strongly wavelength-dependent. At texp, then we measure the spec-

tral radiance at 4 wavelengths (450, fi00, 750 and 900 nm), and we may fit

Ixsb(k,texp) to these data via the X 2 statistic (e.g., Press et al., 1986). In this

case, it is given by

x2(texp)---_ x2[texp;_ilt,Wilt]

1 {I×e,,(×,te.p)-Silt(te,p)I ,,[×,Tilt(t xp)]}2}[3.11],

where a(k) are the experimental uncertainties at each wavelength. On this

basis, Sexp(texp) and Texp(texp) represent the values of _ilt(texp) and Tfit(texp) that

minimize x2(texp); in light of [3.8] and [3.9], this implies that _exp = t_s and

Tex p -- T s. Since the fit is an average over X, the value of Sexp represents a k-

average of e_s- Since X 2 is a nonlinear functional of temperature, we find its

minimum numerically using 1) Golden section (GS) search, and 2) the method

of Levenberg as formulated by Marquardt (LM). See, for example, Press et al.

(1986), for details on both of these methods. To obtain starting values of Silt(t )

and Tilt(t ) for the nonlinear fit, we use Wien's approximation to Ixpl(k,T) in

x2(texp) which follows from Ixpl(k,T ) in the limit exp(CJkT)>>l, i.e.,

2C1 -C_/XTnt(t) [3.12].
IXwsb(k,t ) _ _fit(t) I),wi(k,t ) ---- Silt(t ) -7 e

@
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We fit Wien's relation to the data via linear least-squares, and solve for _fit(texp)

and Tfit(texp).

We present the results of the greybody fit for the six experiments in Table

3.1, and we plot these results in Figures 3.3a-c. We note that, with 3 or 4 data

points and 2 parameters in each of these fits, a X 2 value of ,-_2 is representative

of a "good" fit; this value is very sensitive to measurement uncertainties, as can

be seen from [3.10]. In this case, the values of X 2 in Table 3.1 imply that we

may have overestimated measurement uncertainties. Also, note that Wexp is

much less sensitive to uncertainties than eexp, given the form of Ikg b (Svendsen

and Ahrens, 1887). In Table 3.1, the uncertainties quoted with the GS fits

represent measurement uncertainties mapped into uncertainties for _exp(texp) and

Texp(texp) (Boslough et al., 1986). However, the uncertainty quoted with each

LM fit is the standard deviation of that fit. Note that the GS and LM fits for

shot 196, and the W]en, GS and LM fits for shot 197, give eexp well above unity,

which is an unphysical result. As noted by Boslough st al. (1986), however, efit

is much more sensitive to data scatter, whether due to uncorrected k-

dependences in the data, or experimental measurement errors. As can be seen

from the corresponding GS fits where efit is set equal to one, the variable til t fits

for shots 196 and 197 may then underestimate the value of Tex p by _200 K.

Also note that the value of eexp for all experiments and all fits is _0.1, which

implies that we are observing relatively homogeneous radiation from the sample,

as opposed to localized, "shear-band" radiation seen in many shock-compressed

oxides and silicates at lower (_ 70 GPa) pressure (e.g., Kondo and Ahrens,

1983; Schmitt et al., 1986). Although the constraint is very poor, we note that,

from the identification (1-r_)(1-r_)_,_exp, as discussed above, r_-_0.1 with

rxrs--¢0.1, for shots 140 and 141, at least.
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Figure 3.3. Spectral radiance versus wavelength and greybody fits constrain-

ing _exp(texp) and Texp(texp) for shot 140 data. The size of the data
rectangles represents the experimental uncertainty. The data and

fits in parts (a), (b), and (c) are from shots 140, 169 and 197,

respectively.
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§4. Hugoniot Calculations and Comparison with Data

We calculate the density, Pw and pressure, Pw of the shock-compressed Di

states, from an impedance match (Rice et al., 1958) between the target com-

ponents assuming a linear shock velocity, U, material velocity, v, relation, i.e.,

U -- at + biv. For Ta, we use pia-_-16675 kg/m 3, at_--3290 m/s and bi--l.31

(Mitchell and Nellis, 1981), while for Ag, we use pia---10501kg/m 3, ai---3270 m/s

and bi-_1.55 (Marsh, 1980). We assume that the U-v relation for crystal Di,

which is experimentally constrained to 100 GPa (Svendsen and Ahrens, 1983) is

valid to 170 GPa (Table 4.1). Since there are no U-v data for glass Di, we must

estimate the U-v coefficients for glass Di, atg and big, from those of the

corresponding crystal material, ate and bi¢. With ats and bis, we may calculate

the impedance match for glass Di targets, and so estimate the experimental

glass Di Hugoniot states. Since the U-v relation represents a Taylor's series

expansion of U(v) about the initial state v=0, at and b i are defined by

% _- li..,n_{U_ } [4.1]

b,------v-.olimt/"_vdU} [4.2].

Now, we may connect U and v to PH via the relations

U2._ 1 [p _ p_]
PlaSH

and

Using [4.1] and [4.2] in

equivalent to v-*O, we obtain

[4.3]

v2-" p_[P.- Pi] [4.4].

[4.3] and [4.4], and noting that the limit pa_pi _ is
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Table 4.1. Standard Temperature and Pressure (STP) Parameters.

Property Symbol Ta Ag CaMgSi20 8 Units

Density p 16676 a 10501* 3277* kg/m 3

Intercept, U-v relationt a 3290 b 3270 c 5620 'r m/s

Slope, U-v relation b 1.307 b 1.55 c 1.27 'r

Bulk modulus K s 180.8 e 109.6 e 103.5 e GPa

(0Ks/0P)s K_ 4.23 f 5.201 4.08 !

Coefficient of thermal expansion _ 1.8 t 5.7 r 3.2 h

Specific heat at constant pressure % 140.2" 235.5* 769.0*

Gr_neisen's parameter _ 1.4 i 2.5 i 1.3 i

Melting temperature T M 3287* 1234" 1664" K

Elastic Debye temperature 0D 263.8 i 226.4 i 654 k K

• Robie et al. (1978).

b Mitchell and Nellis (1981).

¢ Marsh (1980).

Svendsen and Ahrens (1983).

c Calculated assuming Ks_pa 2.

! Calculated with I_4b-1.

f Touloukian et al. (1975).

h Stebbins et al. (1983).

i Calculated from ff_aKs/pc P.

J Alers (1965).

k Kieffer (1979).

ti.e., U=a+bv
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, {'ira= [4.5]
pH--*pla [

and

1 lira / dlnBH I/ [4.6]

with

B_ _- pHI dPH} [4"71"

We relate glass and crystal Di Hugoniot states at the same density, occupying

the same phase, via the relation (Appendix A)

(1-¢)[1-(1 +lw_rl_ _¢Pil + "ig_i-a^_ c-s

1 [4"81"
P_(PQ -- [1-(I+I'_H)_?_ em+ % [1-(1+_)_?_]

Relation [4.8l depends on the assumption that % the equilibrium thermo-

dynamic Gr_neisen's parameter, is a function of density alone. In [4.8],

_ "_p_, _7_x_ 1-Pi_/Ps is the relative compression of the glass,

17_ _ 1 - Pi¢/PH is the relative compression of the crystal, ¢ _- 1 - Pig/Pic is the

"porosity," and Aei ¢-g _ e(Pic ,sic ) -e(Pig,sig ) is the difference in specific inter-

nal energy between the glass and crystal in the low pressure phase at _. and Pi.

Further, P_ is the pressure of the glass Hugoniot state, P_ is the pressure of the

crystal Hugoniot state, Pi_ and si_ are the initial glass density and specific

entropy, and pica and sica are the initial crystal density and specific entropy.

Since relations [4.1]-[4.7] are valid for any "hydrodynamic" starting material, we

have

-- lira [ clP_] _ [4.oi
ais Pa'-*P_ _ dPH I
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-__ 1 lim / dlnB_big _.{1+ [ dlnPH 1}} [4.10]

for glass Di, with P_ given by [4.8]. Note that [4.7] relates the density deriva-

fives of P_ to those of P_, which we obtain from (McQueen et al., 1067)

a 2
Picale_/al

-- + [4.11I.
(1 - bie_7_2

the so-called shock wave equation-of-state. So, via [4.8]-[4.10], we may calculate

at_ and bis as functions of Pi_, Pica, a_¢ and bi¢. These then allow us to calculate

an impedance match for targets containing glass Di as the sample material, and

obtain an estimate of the glass Di Pvv Pn state. We also use [4.8] to estimate the

p.(P_) and so W.(P_) via [4.121 below.

The temperature of a singly shock-compressed material, T_, may be

estimated from an equilibrium thermodynamic energy balance (e.g., McQueen et

al., 1967; Ahrens et al., 1969; Jeanloz and Ahrens, 1980b; Chapter I, §4) in

which we assume the material compresses adiabatically, and as an elastic fluid.

On this basis, if we compress a material from an initial state (Pi,_') to a shock-

compressed state (PmTx), assuming the material undergoes a phase transition

from a low-pressure phase, a, to a high pressure phase, fl, the Hugoniot tem-

perature of the _phase, TH, may be written

TH---_ T_+ 1__{1{1 1 }PH-[Ae,l+Aei_-_]} [4.12],
Cv pi a ,OH

with _?H---- 1-pia/P_ being the relative compression. To write [4.12], we assume

that cv, the specific heat at constant volume of the shock-compressed state, is

independent of temperature, which is justified a posteriori by our results below.

The subscripts "i", "H", "S" and "V" designate initial, shock-compressed, con-

stant entropy and constant volume states of the material, respectively. Note

that all quantities in [4.12], and the expressions to follow, apply to the high-



- 260-

0

O

O

0

O

pressure phase, f?, unless otherwise designated. In [4.12], Aei_a is the difference

in specific internal energy between the two phases at _ and Pi, A% is the

change in specific internal of/_ compressed isentropically (at specific entropy si)

from its density at STP, Pi, to a density p. (that of the shock-compressed state),

while T s is the temperature of the material along the isentrope referenced to si

and Pi. Also, PK is the pressure of the shock-compressed state.

The temperature, T_, along the compression isentrope may be estimated

from q via the relation

since we assume 2p is constant in all model calculations. Lastly, we estimate

&esi from the same energy balance used to obtain [4.12], the expression for TH

(Chapter I, §4).

Since we usually have values for Oil, Pi_, aic and bic a priori, and we can

estimate _% and bi_ as discussed above, we use these to calculate impedance

matches for targets containing crystal and glass Di. The impedance match gives

us P_PcH and P_P_r With these, we have T_P_) and T_(P_) from [4.12], given

estimates of ri, "_ and cv for/_, as well as Aei _-a (Aei_-a+Aei ¢-g for the glass).

Requiring P_"*Pi as pH---_pi_, we have Aei c-_ from [4.12], i.e.,

Z ei -- 1--2-- (1 - (1-¢)[1-(1+ %)n0glP (p  ) ,
.Oi_%g

with rlcg_---l-Pi_/Pi_ and %s _ "/(Pi_). In this case, T H for glass and crystal Di

starting materials depends on the basic unknowns Pi, "_ and Cv for the high-

pressure phase,/_, as well as Aei _-_. From [4.12], we see that the slope of TH(PH)

is controlled by the magnitude of cw while the initial value of T H is governed by

Aei _a. Further, from [4.12] and [4.13], we see that -y influences T H via the

isentropic properties T_ and A%. In addition, "_ influences the Hugoniot

Q
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temperature of glass Di through [4.8]. The density of /3 at _. and Pi, Pi,

influences T, indirectly, but signmcantly, through [4.12], [4.13], and

In Figures 4.1a-c, we display calculated Hugoniots for crystal and glass Di

that "fit" the shock temperatures constrained by the data discussed above. We

give a range of these Hugoniots based on a range of values for Pi (3900-4300

kg/m 3, Figure 4.1a), % = "/(Pi) (1-2, Figure 4.1b), and Aeit_-a (0.4-1.4 MJ/kg for

crystal Di, and 1.8-2.8 MJ/kg for glass Di, Figure 4.1c) to demonstrate the sen-

sitivity of T. to these unknowns. In all these calculations, we assume that cv is

given by its classic lattice value, 3vR/M (Table 4.1). The experimental results

for the slope of TH(PH) for the crystal and glass Di Hugoniots suggest that this is

not an unreasonable assumption, although there are not enough data to rule out

a pressure-temperature dependent cv (e.g., Lyzenga et al., 1983; Boslough et al.,

1086). From previous work on the pressure-density Hugoniot of Di (Ahrens et

al., 1966; Svendsen and Ahrens, 1983), the range of possible Pi values shown in

Figure 4.1a for HPP Di are based on mixed-oxide and perovskite models for

HPP Di. Comparing the results in these figures, we see that T H for crystal Di is

most sensitive to Pi, followed by AeiP'-a and then %. For glass Di, T. may be

slightly more sensitive to % than Aeifl'-a , but not really knowing a plausible

range of values for these parameters, we find it hard to say.

From the curves in Figures 4.1a and 4.1c, we note that the glass data

would also be satisfied by the combination of a lower initial density (3900

kg/m 3) and lower value of Aei _'a (1.8 MJ/kg); this is also consistent with the

gla,_ Di states representing liquid. Even if #i_4100 kg/m 3 for glass Di, melting

is favored, considering the magnitude of &el _-a (2.3 MJ/kg) needed to "fit"

these data. The magnitude of Aei _-a for the "best-fit" crystal Di Hugoniot (0.8

MJ/kg, Table 4.2) is of the same order as those estimated for some silicate and

oxide dynamic solid-solid phase transformations (e.g., 0.82 MJ/kg,

a-SiO2--*stishovite, Lyzenga et al., 1983). If the glass data represent a solid-

Q
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Figure 4.1. Shock temperature versus pressure for crystal and glass Di, and

model Hugoniots for a range of values of (a) the STP density of

the high-pressure phase (HPP), Pi, (b) the equilibrium thermo-

dynamic Gruneisen's parameter, "/i, and (c) the difference in

specific internal energy between phases at STP, Aei _-a.
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Table 4.2. CaMgSi20 _ STP parameters.

Density

Intercept

Slope

Density

Intercept

Slope

Property Symbol

P

&

b

crystal glass Units

U-v relationt

3277" 28286 kg/m 3

5620 c 4775 d m/s

1.27 c 1.28 d

High-pressure phase

Bulk modulus

(aIQ/ aP )_

Gr_nelsen's parameter:_

Specific heat§

HPP-LPP energy difference

P

R

b

"7

cv

Aei_-a

4100 c 4100 c

7826 e 7826 e

1.22e 1.22e

2515 251 /

3.90_ 3.90g

1.5 h 1.5 h

1151.8 1151.8

0.9 h 2.3 h

kg/m z

m/s

GPa

J/kg.K

MJ/kg

@

ti.e., U=a+bv. These relations are valid for v>2000 m/s.

p_=constant assumed in all calculations.

§ Dulong-Petit value, used for cv in all calculations.

• Robie ¢t a/. (1978).

b Table IV.

' Svendsen & Ahrens (1983}.

from method in text.

"HPP U-v relation(ChapterI,§4).

/ assuming K s = pa2.

"(0Ks/0P)s = 4b-I (Ruoff,1967).
Afrom model calculationsintext.

@
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solid plus melting transition, this implies a value for Aei#-a of _ 1.5 MJ/kg for

melting of HPP Di. This compares, for example, with 1.6 MJ/kg estimated by

Lyzenga et al. (1983) for the stishovite---_liquid SiO2 transition. This line of

thought also leads us to believe that the glass Di data represent liquid Di, while

the crystal Di data represent a mixture of high-pressure oxide (B2-CaO, MgO

plus stishovite) and/or perovskite (CaSiO 3 plus MgSiO3, or CaSiO 3 - MgSiO 3

solid solution) phases.

§5. Discussion

In Table 5.1, we list the greybody fit and uncertainties, along with the cal-

culated shock-wave velocities, shock-transit times, pressure and temperature, for

each experiment. The values of _exp(texp) and Texp(texp) in Table 5.1 for shots

140, 141, 160 and 170 are those for the GS fit with efit and T_t variable, which

we choose as representative of the other estimates, within experimental uncer-

tainties. As discussed above, since _exp(texp) for shots 196 and 197 are

significantly greater than unity, we choose the GS fit with til t set to one as the

"experimental results" for these shots as listed in Table 5.1.

We display the "best fit" Hugoniot to the present experimental results

(continuous curve) in Figure 5.1 along with other experimental results inferred

from radiation data for SiO 2 (Lyzenga et al., 1983), CaO (Boslough et al., 1986),

and MgO (Svendsen & Ahrens, 1087). Also shown are the mantle temperature

profiles of Brown & Shankland (1980) and Stacey (1077). These two models

represent the range of models currently considered plausible. The HPP Di

results fall between the CaO and MgO results, and well below those for stisho-

rite and liquid-SiO 2. To first order, this is due to the differences in the STP

densities of the HPP's of each material. MgO, which apparently does not

undergo any phase transformation below 200 GPa (Vassiliou and Ahrens, 1081;

Q
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Table 5.1. Experimental Results and Model Estimates.

O

$

O

Experimental Results

Shot p d Vim _exp Texp

(ram)(m/s) (K)

140 3282 1.868 5983 0.57 4215

(6)t (0.010) (60)(0.23) (364)

141 3283 1.566 6143 0.90 4782

(6) (0.010) (50)(0.20) (356)

169 3290 2.424 6048 0.97 4555

(5) (0.004) (40)(0.24) (268)

I I"I INl,v 3289 1.970 5593 0.85 3508

(7) (0.010) (50)(0.14) (141)

196 2829 4.008 4673 1.00 3711

(1) (0.004) (30)(0.44) (231)

197 2827 3.906 4729 1.00 3866

(1) (0.001) (30)(0.39) (208)

Calculated Results

U v axss tst PH Ts

(m/s) (m/s)(m -1) (ns)(GPa) (K)

11210 4403 880 167 162 419(

11360 4518 1061 140 169 4524

11300 4448 681 192 165 4313

10850 4121 818 182 147 3590

9678 3884 417 414 105 3660

9733 3885 420 408 107 3795

O

- measurement uncertainty.

p - STP bulk density.

d - Sample thickness.

vim- Impact velocity.

_exp - Experimentally-constrained greybody effective emissivity.

Tex p - Experimentally-constrained greybody absolute temperature.

t r - Time during radiation history when Iexp used to constrain Tex p and _exp was read.

U - Calculated shock wave velocity through sample.

v - Calculated material velocity of shocked sample sample.

axss - lower bound to absorption coefficient of shocked sample.

tat - Calculated shock wave transit time through sample.

PH" Calculated shock-compressed pressure of sample.

WH- Calculated shock-compressed temperature of sample.
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Figure 5.1. Experimental and model pressure-temperature Hugoniot results for

HPP Di, along with results for B2-CaO (Boslough et al., 1984),

MgO (Svendsen and A_hrens, 1987), and SiO 2 stishovite and liquid

(Lyzenga et al., 1983). Also shown are the mantle temperature

profiles of Stacey (1977) and Brown and Shankland (1980). The

vertical line marks the pressure of the mantle-core boundary

(135.7 GPa).
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Svendsen and Ahrens, 1987) has an STP density of 3583 kg/m 3, B2-CaO has an

initial density of _ 3800-4000 kg/m 3 (Jeanloz and Ahrens, 1980a; Boslough et

al., 1984), HPP solid Di is likely to have a slightly larger Pi (_4100 kg/m 3,

Table 4.3) than B2-CaO, as discussed above, and stishovite has an STP density

of _ 4300 kg/m 3. This is also true because the values of &ei _-_ for each

material are approximately the same. Since B2-CaO and HPP Di apparently

have very similar Pi, other factors, such as compressibility (B2-CaO has a lower

bulk modulus than HPP Di: Jeanloz and Ahrens, 1980a; Boslough et al., 1984;

Svendsen and Ahrens, 1983), become important. B2-CaO is more compressible

than HPP Di, and so its Hugoniot temperature rises more quickly than HPP Di.

Low-pressure static studies of Di (e.g., Liu, 1979b) imply that CaMgSi20 8

may disproportionate into CaSiO 3 perovskite and MgSiO 3 perovskite above

20 GPa and 1000 C. Our results are not inconsistent with this, and yet we

really cannot distinguish between perovskite and mixed-oxide (or some combina-

tion) assemblage. The model we favor (Table 4.3) is more likely representative

of the perovskite mixture for CaMgSi20 6 (Svendsen and Ahrens, 1983).

In comparison with the mantle temperature profiles displayed in Figure 5.1,

we note that both B2-CaO and HPP Di Hugoniot may be at about the same

temperature at the pressures of the lowermost mantle. We note that some of

the compositional models for the lowermost mantle (e.g., Ruff and Anderson,

1980), known as the D" region, contain significant amounts of more refractory

oxides and/or silicates (i. e., CaO, A1203, CaSiO3, etc..).

§6. Summary

Observed radiation from shock-compressed crystal CaMgSi20 8 (Di) con-

strains Hugoniot temperatures of 3500-4800 K for this material in the 150-170

GPa pressure range, while glass CaMgSI206, with a starting density 87_ that of
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crystal Di, achieves Hugoniot temperatures of 3600-3800 K in the 105-107 GPa

pressure range. The shock-induced radiation history for these materials implies

that both shock-compressed crystal and glass Di are strong absorbers

(ax._..500-1000 m-l). Calculated Hugoniot states for these materials, in com-

parison with the experimental results, suggest that crystal Di Hugoniot states in

the 150-170 GPa range represent an HPP solid (or possibly liquid) phase with

an STP density of 41004-200 kg/m z, STP Gr_neisen's parameter of 1.5+0.5 and

STP HPP-LPP specific internal energy difference of 0.94-0.5 MJ/kg. These

parameters are consistent with either a Ca-Mg mixed-oxide or pervoskite assem-

blage. For glass Di, we have the same range of HPP properties, except that

Aei _-a is 2.34.0.5 MJ/kg, a strong indication that the glass Di Hugoniot states

occupy the liquid-phase of CaMgSi206, and that AeifLa_l.5Mg/kg for HPP-Di

melting. This value for Aei_-a is similar to the shock-temperature results for

SiO 2 (Lyzenga et al., 1983). Comparison of the experimentally constrained

pressure-temperature Hugoniot of crystal Di with the experimentally constrained

Hugoniots of its constituent oxides (i.e., SiO2, CaO and MgO) demonstrates the

strong influence of the HPP, STP density of these materials on the magnitude

of the temperature in their shock-compressed states. The experimentally con-

strained crystal Di Hugoniot falls within the plausible range (2500-3000 K) of

mantle temperature profiles in the range of pressures (110-135 GPa) correspond-

ing to the lowermost mantle.
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Abstract

Measurements of the temperature of Fe under shock compression have been

performed to Hugoniot pressures of 300 GPa. The samples consist of thin Fe

films, 0.5 to 9.5 _m in thickness, or Fe foils in contact with a transparent anvil

of either single-crystal A120 3 or LiF. Temperatures at the sample/anvil inter-

face are obtained by measuring the spectral radiance of the interface, for the

duration of the shock transit through the anvil, using a 4-color optical radiome-

ter. On the basis of our experimental data we conclude that a measure of the

sample Hugoniot temperature, as opposed to the temperature of the A!203

anvil, can thus be obtained. Our results further indicate that the Al20 3 remains

at least partially transparent to pressures of at least 230 GPa and temperatures

of over 9,000 K. We obtain a melting temperature of Fe along the Hugoniot of

6700 4- 400 K at 243 GPa. Taken together with recent determinations of melt-

ing temperatures to 100 GPa (Williams et al., 1987), our results place an upper

bound on the temperature at the inner core-outer boundary of 7800 4- 500 K.

§1. Introduction

The properties of matter at exceedingly high degrees of compression may

be investigated using shock wave techniques. In a typical equation-of-state

experiment it is usual to determine the shock velocity (U), material or particle

velocity (v), and the differences in pressure (P), specific volume (v), and internal

energy (E) between the initial state and the shock-compressed state. The tech-

niques used to perform such experiments are relatively well developed and have

been described in many articles published over the past two decades. However,

the above mentioned parameters do not by themselves give a unique thermo-

dynamic description of a material in the shock-compressed, or Hugoniot state.

In particular, the temperature along the Hugoniot, or locus of shock-compressed

states, is generally undefined. Using modern shock wave techniques, pressures on
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Figure 1.1.
Schematic diagram illustrating the effect of a phase boundary with

positive Clayperon slope, dP/dT, upon the equilibrium Hugoniot
temperatures.
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the order of several hundred GPa, corresponding to those of the Earth's lower

mantle and core, are easily attained in solid samples. The concomitant tempera-

tures reached in these experiments are generally many thousands of Kelvins. In

order to apply the results of shock wave experiments to states off the Hugoniot,

for example adiabats or isotherms, it is necessary to either measure or calculate

Hugoniot temperatures achieved during shock loading. Although Hugoniot tem-

peratures may be calculated, this procedure is subject to large uncertainties

because of imperfect knowledge of thermal properties such as Gr_neisen's

parameter and the specific heat.

An additional motivation for performing shock-temperature measurements

is to identify the existence of phase transitions along the shock compression

curve. It has been found that many phase transitions, especially those involving

only a small density change, are not obvious in terms of Hugoniot parameters,

and are manifest only as subtle changes of slope in the U-v or P-v Hugoniot

relationship of a given material. However, such phase transitions may have a

more pronounced signature in the T-P plane. When the Hugoniot intersects a

phase boundary there will be, in principle, a substantial offset, or discontinuity

in the Hugoniot T-P curve (Kormer, 1068). As shown in Figure 1.1, the

Hugoniot will coincide with a phase boundary over some pressure interval,

which is determined by the amount of energy needed to drive the transition to

completion. Such behavior has been inferred from shock-induced radiation data

on NaCl (Kormer ct al., 1965; Ahrens et al., 1982).

In this paper we present the results of our initial attempts to measure the

temperature of Fe under shock loading, using a 4-channel optical radiometric

technique. Although similar measurements have been made on a variety of

transparent materials in recent years, the extension of this methods to opaque

materials has a number of serious experimental difficulties, which will be dis-

cussed below. To the best of our knowledge, the results summarized in this

O
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paper represent the most extensive data set obtained to date on the tempera-

ture of a shock-compressed opaque material. We have chosen Fe for our initial

experiments because of its geophysical importance as a probable major constit-

uent of the earth's core.

§2. Experimental Method

All of our experiments were performed using a two-stage light-gas gun

(Jones et al., 1966; Jeanloz and Ahrens, 1977), in which lexan projectiles bearing

Ta flyer plates were accelerated to velocities of up to 6.5 km/s. Impact veloci-

ties were measured by taking two flash X-radiographs of the projectile in flight,

and are known to better than 0.5% accuracy. Pressures in each part of the sam-

ple assembly, which will be described in detail below, were calculated using the

impedance matching method (Rice et al., 1958). Necessary equation-of-state

parameters are given by Mitchell and Nellis (1981, Ta), Brown and McQueen

(1986, Fe), Carter (1973, LiF), and the 19 highest pressure data points listed by

Marsh (1980) for Al2Oz.

The basis of the experimental method used in our study is to record the

spectral radiance emitted by the sample when it is shock-compressed to high

pressure and temperature. Assuming that the sample emits light as a greybody,

data obtained at several discreet wavelength bands may be fit to the function

L(k)---_eC]), -5 (exp(C2/kT) -I)"i [2.1],

where L, the spectral radiance, is the observed quantity in the experiment. In

each experiment, data are obtained at the four wavelengths 450, 600, 750 and

900 nm, and using [2.1], values for the temperature and emissivity are obtained

by a least-squares regression. This technique was initially developed by Kormer

et al. (1965), who used a two-color pyrometer to determine the Hugoniot tem-

perature of transparent samples. Later versions of this instrument employing six
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or four channels in the visible portion of the spectrum were designed by

Lyzenga and Ahrens (1979) and Boslough (1984), respectively.

In our experiments we have used the optical recording apparatus designed

by Boslough (1984), a schematic diagram of which is shown in Figure 2.1. Light

emitted by the sample is directed to a collimating lens by an expendable front

surface mirror. The lens is positioned at one focal distance (50 cm) from the

sample. The collected light is then separated into four parts by way of three

beamsplitters, is demagnified and focused onto four photodiodes. The image of

the sample is far smaller than the active area of the photodiodes, so that the

photodiodes do not have to be positioned with a high degree of precision. An

interference filter is situated in front of each photodiode to pass only a limited

band (_40 nm FWHM) about each desired central wavelength. The output

voltage of each photodiode is amplified and recorded on an oscilloscope and a

high-speed digital recorder, thus providing redundancy in each measurement

and a backup of each channel. Further details of the system are given by

Boslough (1984).

For shock temperature experiments on opaque materials, the construction

of the target assembly is of critical importance. As shown in Figure 2.2, the

main components of the assembly are a 0.5 mm thick Fe driver plate, either a

film (<=10/_m thick) or foil (30/Jm thick) of Fe, which is the actual sample, and

a 16X3mm thick disc of single-crystal sapphire or LiF. The sapphire serves

both as an anvil, to maintain the Fe sample at high pressure after the shock

front traverses the Fe-A1203 interface, and as a window through which thermal

radiation must be transmitted during an experiment. Therefore, the criteria that

are important in choosing an anvil/window material are that it have a shock

impedance as close as possible to that of the metallic sample, thereby minimiz-

ing release or reshocking of the sample upon arrival of the shock at the inter-

face, and that the anvil remain transparent when shocked to high pressures.

Q
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Figure 2.1. Diagram of the main components of the shock temperature meas-

urement system. The path of light radiated by the sample is indi-

cated by the dashed lines. Each of the four channels (CH#) in

the radiometer consists of an interference filter, a lens for demag-

nifying the image, a photodiode, and an amplifier.
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One general conclusion from optical studies on shocked materials in this and

several other laboratories is that initially transparent materials seem to radiate

as blackbodies, or greybodies with emissivities close to 1, when shocked above

phase transition pressures. This implies that the occurrence of phase transitions

along the Hugoniot tends to yield an opaque material. Therefore, we have fol-

lowed the strategy of Lyzenga and Ahrens (1979), and Urtiew and Grover (1977)

and chosen A120 3 as our primary anvil material because it does not undergo any

known phase transitions along the Hugoniot. We note, moreover, that A1203

has been observed to remain transparent to static pressures in excess of 500

GPa (Xu et al., 1986) and under dynamic loading to at least 100 GPa (Urtiew,

1974). A120 3 also provides the optimal impedance match to Fe out of all poten-

tial window materials.

Urtiew and Grover (1974) have performed a theoretical analysis of the heat

generated at the interface between a sample and a window upon passage of a

shock wave through the interface. These authors considered the effects of two

types of interface imperfections: a small uniform space or gap between the two

materials, and roughness, or topography on the surface of the opaque sample.

In the first case the metal sample has a free surface at which, upon arrival of

the shock front, the material is released to atmospheric pressure and some

elevated temperature in a near adiabatic fashion. The hot, released material at

the surface subsequently impacts the anvil surface, thus reshocking the sample

to high pressure and a temperature that is greater than would be attained along

the principal Hugoniot of the sample. The case of surface roughness was treated

as a layer of porous sample material adjacent to the anvil, again leading to tem-

peratures at the interface that are higher than the Hugoniot temperatures of

either the anvil or a perfectly dense sample.

From the above studies it is clear that in order to measure an interface

temperature that is directly related to the Hugoniot temperature, the sample

$
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must be in near perfect contact with the window. This was experimentally

verified by Lyzenga and Ahrens (1979), who performed shock temperature meas-

urements on Ag using three different target configurations. They found that the

direct impact of an Ag projectile onto a A1203 window, and the use of a Ag foil

wrung onto the anvil, led to transients in the spectral radiance versus time data.

A sample of vapor-deposited Ag on an Al203 substrate gave a much more stable

signal. Base upon the experience of Lyzenga and Ahrens with Ag, we decided to

prepare samples with vapor deposition using a Varian electron beam evapora-

tive coating system. This technique maximizes the chances of obtaining a

flawless contact between the sample and window on an atomic scale, thus obvi-

ating any thermal signal due to an interracial gap. However, as discussed later,

our data indicated that ideal interface conditions were attained in only a frac-

tion of the samples. Fe was deposited under a total vapor pressure of 3X 10 -7

tort at a rate of approximately 25 angstroms per second. Films with

thicknesses of 0.5 _m ( in the first successful run) to 9.5 _m were produced. A

calibrated crystal oscillator with a characteristic frequency that changes as a

film is deposited upon it, was positioned near the substrate to monitor the depo-

sition rate and final film thickness. Our experience has been that Fe adheres

poorly to A1203, and a majority of the films would peel off of the substrate

either during, or a short time after, coating. This problem became more severe

as we tried to increase the film thickness, but was somewhat alleviated by

extremely thorough cleaning of the substrate prior to coating.

The thickness of the sample film is an important consideration in this

experiment. Because the interface between the driver and film sample cannot be

perfect, there is a possibility of significant heat production for the reasons dis-

cussed above, ff a film is too thin, this heat could diffuse to the sample/anvil

interface on the time scale of the experiment, thus yielding an erroneously high

temperature that increases with time. It was not possible to determine a priori
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what a safe minimum film thickness would be, since we have little or no infor-

mation on the appropriate thermal properties at elevated temperatures and

pressures. Therefore, we simply tried to obtain as thick a film as possible and

found 9/_m to be the approximate upper limit of our techniques. Our experimen-

tal data indicate that this thickness is satisfactory, because the shot records

show no consistent evidence for heat diffusion to the sample-anvil interface. In

fact, most of our records showed a light decrease in the intensity of light as the

shock front progressed through the window. This is most easily interpreted as a

change in the optical properties of the window material under shock loading.

As a source of Fe for the films and driver plates we used a low carbon steel

("Cor 99", Corey Steel Co., Chicago, IL), with a total impurity content of less

than 0.12°_ (analysis supplied by the manufacturer). The density was measured

by the Archimedian method to be 7.844-0.02 gm/cm 3, just slightly lower than

the x-ray value of 7.874gm/cm 3 (Berry, 1967). In the last film experiment, a

commercial Fe powder of nominal 99.9°_ purity was used. The Fe film from one

sample was peeled off the substrate and examined by X-ray powder

diffractometry. A well-defined peak corresponding to the most intense (110)

diffraction maximum of a-Fe was found, indicating that the films are highly

crystalline rather than in an amorphous state.

The vapor deposition method is an extremely time-consuming method of

preparing samples. As an alternative, we investigated the possibility of using

thin Fe foils as samples in five experiments. Fe foils of 0.03 mm thickness and

nominal 99.99% purity were obtained by Alfa Products and used as samples in

this series of shots.

§3. Results

Figure 3.1 shows the raw oscillographic data from one of the shock tem-

perature experiments. A noteworthy feature of these record is that there is no
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evidence of a "spike," or strong transient in light intensity when the shock

reaches the interface, or the thermal relaxation of a thin Fe layer, which is

extremely hot due to porosity. It is also important to note that the voltage, or

intensity of light, is nearly constant in time, indicating that thermal diffusion

from the driver/film interface to the film/anvil interface is probably not

significant. All of the voltage records from the experiments at higher pressures

showed a modest to a rapid decrease in light intensity with time, although no

spikes were observed. One interpretation of the decrease in light intensity is

that the sapphire anvil is appreciably absorbing in the optical range above pres-

sures of about 225 GPa. Only experiment _167 (Table 4.1) at 196 GPa exhi-

bited a modest increase of light intensity with time, and the reason for this

behavior is as yet unresolved.

The spectral radiance values obtained from the voltage data of Figure 3.1

are plotted in Figure 3.2. Because the spectral radiance is never precisely con-

stant as a function of time, it is important to consider that part of the voltage-

time record is appropriate to use for obtaining a Hugoniot temperature. We

have chosen to read the initial part of each record, just after the sharp increase

in voltage which corresponds to arrival of the shock at the interface. In this

way we obtain a measure of the thermal radiance of the sample viewed through

unshocked, transparent anvil material. This choice should minimize potential

problems due to light absorption by the anvil, diffusion of heat from the

driver/sample interface to the sample/anvil interface, and contributions to the

signal by the shocked anvil.

For the purpose of transforming the observed voltages to a temperature, it

is necessary to calibrate the pyrometer with a standard light source. As

described by Boslough (1984), we use the chopped signal from a tungsten lamp

of known spectral irradiance (Optronics Laboratories, Orlando, Florida). The

resulting experimental values of spectral radiance may then be fitted to a
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Figure 3.1. Oscillographic record of voltage as a function of time for one of

the shock temperature experiments. The amplitude of the voltage

above the baseline seen in the initial _ 400 ns of the record, is

proportional to the spectral radiance at the sample/anvil interface.
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radiation function, such as Planck's Law, to obtain the temperature and emis-

sivity of the sample-anvil interface. In Figure 3.2 we show least squares fits to

the data using the emissivity obtained by regression, and also a value of unity

as appropriate for a black body. It is clear that the data are described far

better by using a greybody (emissivity_A1) rather than a blackbody function;

this is quantitatively expressed by emissivity values that are statistically

different from one (Table 4.1). The errors shown in Figure 3.2, and listed in

Table 4.1 for the interface temperature, take into account the estimated uncer-

tainties in reading the baseline and signal voltages on the oscillograms (or tran-

sient recorder plots), the calibration voltages, the spectral irradiance of the cali-

bration lamp, and diameter of the mask aperture.

The data from our experiments yield temperature values for the sample

material at the interface with the anvil. In order to obtain the Hugoniot tem-

perature of the sample, it is necessary to correct the interface temperatures for

two effects: the influence of the relatively cold anvil, and partial release of the

Fe due to the impedance mismatch of the sample and anvil materials. In the

ideal situation where the sample has no porosity and is in perfect contact with

the anvil, it has been shown (Grover and Urtiew, 1974) that the interface tem-

perature Ti, is independent of time and is related to the temperature of the

released sample, Tr, by

(T a - Tr)

Ti-"Tr4 (1-I-a) [3.1].

Here, T a is the Hugoniot temperature of the anvil, and a is given by

1/2 1/2} [3.21,

where t¢ and D are thermal conductivity and diffusivity, respectively, p is den-

sity, C is the specific heat, and the subscripts r and a refer to released Fe, and
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Figure 3.2. The data from Figure 3.1, and additional data from digital record-

ers, plotted in terms of spectral radiance versus wavelength. The

solid curve is obtained from least-square regression for both tem-

perature and emissivity using Planck's Law; the dashed curve is

the least-squares solution for temperature alone with the emis-

sivity fixed at unity.
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Hugoniot state of the anvil, respectively.

The thermal properties needed to evaluate a in [3.2] have not been meas-

ured under the extreme P and T conditions of our experiments, and c_ must

therefore be estimated from available data and theory. For the anvil materials,

we first evaluate the effect of temperature on the lattice contribution to the

thermal conductivity, _a(P,T). Low-pressure conductivity data were fit to

expressions of the form I¢(0,T)----AI+B1/T yielding coefficients of

A1---2.599 W/re'K, B1--1.176X104 W/m for A120 3 (Kingery et al., 1954), and

A1-"-0.2023, B1_3.671 X 103 for LiF (Men' et al., 1974). These equations

allowed for calculation of _,(0,T) at the anvil Hugoniot temperature. The effect

of pressure on the anvil conductivity was then calculated using the Debye-

Gr_neisen approximation &c/_,_76p/p, presented by Roufosse and Jeanloz

(1983). In order to evaluate this last expression, the anvil density at 0.1 MPa

and the appropriate Hugoniot temperature is obtained from the thermal expan-

sivity in the form dlnp/dT--A2+B2T. Values of A2(298K)_9.8×10-SK-1 and

B2_l.2×10-TK -2 were used for LiF (Pathak and Vasavada, 1972; Rapp and

Merchant, 1973), and A2----'1.62 × 10-SK -1, B2_l.1 × 10-8K -2 for AI20 3

(Touloukian et al., 1975). Finally, the heat capacity of the anvils was approxi-

mated by the high-temperature Dulong-Petit limit, whereas the Hugoniot den-

sity was determined from the Rankine-Hugoniot relations.

The thermal properties of Fe needed in [3.2] refer to a partially released

state if the shock impedance of the anvil is lower than that of Fe, as is true for

A1203 and LiF. The released density was calculated using the method of

Lyzenga and Ahrens (1978), while the heat capacity was assumed to be the

Dulong-Petit value plus an electronic contribution as given by Brown and

McQueen (1986). The incorporation of an electronic contribution to C v does not

affect the corrected Hugoniot temperatures (Figure 4.1) by more than
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approximately 50 K. In order to obtain the thermal conductivity of Fe we chose

a different approach than that used for the anvil material. Experimental data

have been obtained for the electrical conductivity, a, of Fe under shock condi-

tions by Keeler (1971). Electrical conductivity can, in turn, be related to the

thermal conductivity of metals via the Wiedemann-Franz relation

m-LaW [3.3],

where L, the Lorentz number, has a relatively constant value of about

2.45X 10-8W-_/K 2 for most metals. A linear least-squares regression of a versus

compression, Po/0, yielded an excellent fit with a correlation coefficient of

-0.992. The data v_.ed for this cur;e-fitting were taken from Matassov (1077, fig.

7.4). Knowing the compression of Fe in the release state, we obtain _r for Fe by

assuming that the temperature of the released Fe, needed in the Wiedemann-

Franz relation, is given by the observed interface temperature T i. A value of a

is calculated using [3.2], thereby allowing an initial value for the released tem-

perature, Tr, to be determined by [3.1l. The entire procedure was repeated itera-

tively, using T r in [3.3] to obtain an improved value of _r, and then recalculat-

ing Tr, until T r converged to a stable value.

At this point in the data reduction we have the temperature of Fe in a par-

tially released state of lower pressure than the Hugoniot. To obtain the

Hugoniot temperature, it is necessary to correct for the effects of partial release,

which we do by using the relation

Tr=Thexp - (_/v)dv

[ vh

where -_ is the Gr_neisen parameter of Fe. We assume a constant value of

ffp=16.7 gm/cm s (Brown and McQueen, 198{}) and obtain the released volume,

Vr, using the method of Lyzenga and Ahrens (1978). Further details of these
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calculations, as well as theoretical Hugoniot temperature calculations, are given

by Svendsen et aI. (1987; Chapter I, § 4).

O

O

§4. Discussion

A complete summary of our results is given in Table 4.1. Perhaps the most

important point to be made is that we have obtained a wide range of inferred

Hugoniot temperatures of between _ 6,000 to over 11,000 K. Because the calcu-

lated Hugoniot temperatures of A120 3 are lower by several thousand degrees

(Table 4.1 and Svendsen et al., 1987), these data represent compelling evidence

that the temperature of the opaque sample, as opposed to that of the anvil

material, is measured using the technique employed in this study. Although

anomalously high temperatures have previously been measured for insulators

under shock compression (e.g., Schmitt and Ahrens, 1984), this appears to be a

relatively low-pressure phenomenon related to localized "shear band" deforma-

tion of the sample, which is not operative at high (_,_100 GPa) pressures. More-

over, the high "shear band" temperatures are usually typified by emissivities at

least one order of magnitude smaller than those measured in the present study.

We conclude, therefore, that we are in fact able to record the temperature of Fe

in a shock-induced, high-pressure state. This also implies that the Al203 anvil

remains at least partially transparent under P and T conditions defined by the

Hugoniot pressure in the anvil and the interface temperature (_230 GPa and

7o00-Q0o0 K).

It is apparent from Table 4.1 that the range of inferred Hugoniot tempera-

tures are larger than would be expected from the precision of the data. More-

over, it is equally clear that most of the obvious possible sample defects, such as

an imperfect sample-anvil interface or sample porosity, would yield anomalously

high temperatures. Thus, the lowest observed temperatures should most closely

approximate the true Hugoniot temperatures. In Figure 4.1 we have plotted our
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Table 4.1. Results of Shock Temperature Measurements on Fe

'-i

Shot Sample Anvil Ph (GPa) Pa (GPa) T i (K)* T a (K) T h (K) e t

No. Type Fe Anvil Interface Anvil Fe

167 Film A120 3 196 157 4750 1340 6110 0.29

+-420 +-.14

189 Foil A120 3 202 161 4010 1380 5200 0.29

4-420 +-.14

173 Film Al203 226 178 6240 1550 7910 0.33

+-170 +-.05
190 Foil LIF 227 1 '_") 4660 o"znn _1 o,', ,-, o,_

+-420 +-.19

188 Foil AI20 3 241 188 5390 1660 6870 0.10

+-740 4-.6
191 Film Al203 244 190 6990 1680 8950 0.47

+-350 +-.15

183 Foil A1203 245 191 6970 1690 8920 0.34

+-280 +-.07

157 Film A120 3 251 195 6380 1730 8200 0.70

+-300 +.12

159 Film LiF 263 140 5270 3410 7240 0.96

+-280 +.22

192 Film A1203 263 203 9220 1820 11610 0.29

+-800 d:.30

174 Film AI203 268 207 7580 1860 9670 0.46

+-420 +-.13

181 Foil AI20 3 276 212 9300 1920 11730 0.32

+-550 +-.14

168 Film A1203 300 228 6990 2090 8930 0.86

±330 +-.16

*unweighted fit.

te _ effective emissivity

All Hugoniot pressures (Ph) are measured with a precision of better than +-1

GPa. Note that Ph for the anvil is also the pressure in the partially released Fe

after the shock wave enters the anvil.
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Figure 4.1. Hugoniot temperatures, deduced from our experimental data, as a

function of pressure. The heavy solid line and filled symbols are

from the present study. The dashed curves are calculated

Hugoniot temperatures that differ mainly in the assumptions made

about the specific heat of Fe: McQueen et al. (1970) assume

Csbs6V=3R, whereas Brown and McQueen (1986) incorporate an

additional electronic term. The melting curve is consistent with

our shock temperature measurements as well as the melting. Data

of Williams et al. (1987) obtained in the diamond anvil cell at

pressure up to 100 GPa. Pressures at the core-mantle (CMB) and

inner core-outer core (ICB) boundaries are indicted.
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interpretation of the Fe Hugoniot temperatures based upon the data obtained

thus far. Also shown in Figure 4.1 are the calculated Hugoniot temperatures of

Brown and McQueen (1086), which take into account possible electronic contri-

butions to the specific heat of Fe, and the Hugoniot temperature calculations of

McQueen et al. (1970), which do not include these effects. Electronic contribu-

tions increase C v and thus lower the Hugoniot temperature at any given pres-

sure (see Brown and McQueen, 1986). The fact that our lowest temperature

datum define a P-T trend intermediate between these two theoretical bounds

strongly suggests that these data represent the true Hugoniot temperatures of

Fe.

Brown and McQueen (1986) have, on the basis of sound velocity measure-

ments, identified two phase transitions along the Hugoniot of Fe at pressures of

200 and 243 GPa; these are inferred to represent e--'7 and "r-melt transitions,

respectively. The lowest pressure data in Figure 4.1 exceed 200 GPa and we

therefore cannot tell whether or not the e to "7 transition has any resolvable

effect on the P-T trajectory. However, there is a suggestion of an offset in the

Hugoniot temperatures above 241 GPa (Figure 4.1) that is analogous to the

effect shown schematically in Figure 4.1. Thus, our data are consistent with the

interpretation of the Hugoniot intersecting a melting curve of positive slope at

242 GPa, as suggested by Brown and McQueen (1986) and shown in Figure 4.1.

This interpretation of our data indicates a thermal offset of the Hugoniot of

approximately 450 K, in very good agreement with the estimate of 350 K by

Brown and McQueen (1086).

We are currently unsure as to why some of the experimental data yield

anomalously high temperatures (Table 4.1). Although great care was taken to

produce suitable sample assemblies in a consistent manner, we can only con-

clude that many of the samples were defective in some way. As discussed in a

previous section, the obvious possibilities are an interfacial gap between the foil
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sample and the anvil, and porosity of the films. We have calculated the tem-

peratures that would be expected in Fe for the case of an uniform interracial

gap and obtain values that far exceed our observed range of inferred Hugoniot

temperatures. For example, at 250 GPa, the temperature of Fe which has been

released to atmospheric pressure from the Hugoniot state and reshocked upon

impact with a A120 3 anvil is calculated to be 16,700 K. This value is much

larger than the values of 8,200-11,700 that were experimentally observed at

similar pressures. Therefore, we conclude that none of our foils were separated

from the anvils by a uniform gap, although imperfect contact over a fraction of

the sample area could have produced the high temperatures observed in some

.lff_ : 1of our ,u,, shots.

It is Mso possible that heat generated at the driver plate-sample interface

was able to diffuse through the sample on the time scale of the experiment.

We tested this hypothesis by performing two experiments (_191 and _192)

with thin film samples. These samples were sufficiently thin to transmit visible

light and assured us of detecting a portion of the light generated at the driver-

sample interface, which should be at a much higher temperature than the

Hugoniot state of Fe (see Figure 2.2). These experiments yielded much higher

temperatures (Table 4.1) than those shown in Figure 4.1. Coupled with the

observation that the shot records (Figure 3.1) did not show and increase of volt-

age with time, indicating no heat diffusion toward the sample-anvil interface, we

rejected this as an explanation of the high temperatures observed in many of

the shots.

Because of the small mass and delicate nature of the film samples, we have

not yet been able to measure the porosity of the films. Therefore, we cannot

rule out the possibility of a variable amount of porosity from one sample to

another to explain the discrepancies between the results in Figure 4.1, and the

higher temperature data listed in Table 4.1. Nonetheless, we maintain that the

@
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interpretation shown in Figure 4.1, the set of lowest shock temperatures

representing the Hugoniot temperatures of Fe, is reasonable and the most logi-

cal conclusion to be drawn basedon available data. It is noteworthy that the

data shown in Figure 4.1 consist of several types of sample assemblies:both foils

and films on both A1203 and LiF substrates. As discussed above, each of these

sample configurations has a different experimental problem associated with the

construction of a suitable target: the foils are most likely to be plagued by inter-

face gaps, while the films are observed to be in perfect contact but may be

slightly porous. However, it is significant that the data in Figure 4.1 tightly

define a Hugoniot P-T trajectory that is within the range of previously calcu-

lated theoretical bounds, and is also wholly consistent with the presence of a

melting transition that has been identified by an independent experimental

technique. It is highly unlikely that experiments using different types sample

assemblies would be in error by the same amount. Such a situation would

require that the excess temperature produced by interfacial gaps in the foil

shots be equal to the excess temperature produced by porosity in the film shots.

We prefer the simpler explanation that the data shown in Figure 4.1 are the

Hugoniot temperatures of Fe. This is further supported by the agreement of the

shock-temperature data with independent measurements of the melting tem-

perature of Fe under static conditions in a diamond anvil cell (Williams et al.,

1987).

Our shock-temperature data constrain the melting point of Fe along the

Hugoniot to be 67004-400 K at a pressure of 243 GPa. This value is significantly

higher than the recent estimate of 5000-5700 K by Brown and Mc Queen (1986),

and suggests that electronic contributions to the specific heat of Fe may not be

as significant as assumed in their calculations (see also Boness et al., 1986).

When combined with the melting experiments under static pressures to 100 GPa

by Williams et al. (1987), we obtain a melting curve for Fe as shown in Figure
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4.1. This curve indicates that Fe melts at temperatures of 4800±200 K at 136

GPa, the pressure at the core-mantle boundary, and 7800-4-500 K at 330 GPa,

the inner-outer core boundary pressure.
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Abstract

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO

provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO

systems in the pressure range corresponding to the earth's outer core. The

liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986)

places constraints on the temperature and other properties along the liquidus

above the range of their data. The temperature along the best-fit Fe liquidus is

5000 K at 136 GPa and 7250 K at 330 GPa, which is somewhat lower than that

implied by the Hugoniot results (.-_ 7800 K). This discrepancy may be due to

the reshock effect discussed above, or some inaccuracy in the extrapolation,

presuming the Hugoniot results represent the equilibrium melting behavior of

Fe. Constraints on the solidi of FeS and FeO from the comparison of data and

solid-state model calculations imply that FeS and FeO melt at approximately

4610 K and 5900 K, respectively, at 136 GPa, and approximately 6150 K and

8950 K, respectively, at 330 GPa. Calculations for the equilibrium thermo-

dynamic properties of solid and liquid Fe along the coincident solidus and

liquidus imply that the entropy of melting for Fe is approximately independent

of pressure at a value of approximately R (where R is Ryberg's constant), while

the change in the molar heat capacity across the transition increases with pres-

sure from approximately 0.5 R to 4R between standard pressure and 330 GPa.

We use these constraints to construct ideal-mixing phase diagrams for Fe-FeS

and Fe-FeO systems at outer core pressures, assuming that Fe and FeS, or Fe

and FeO, respectively, are the solid phases in equilibrium with the liquid Fe-FeS

or Fe-FeO mixtures, respectively. Calculated Fe-FeO eutectic compositions at

330 GPa (15-20 mole _ O) are less than 25 mole % O, while calculated Fe-FeS

eutectic compositions at 330 GPa (23-30 mole % S) are generally greater than

25 mole % S. Combined with density considerations, these calculations imply

that an O-rich outer core is more likely to lie on the FeO-rich side of the Fe-
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FeX eutectic, while an S-rich outer core is more likely to lie on the Fe-rich side

of the Fe-FeX eutectic. In addition, eutectic temperatures in both systems are

are _ 5000 K at 330 GPa. Widely accepted temperature profiles for the outer

core, ranging from ,_3000 K at the 136 GPa, the core-mantle boundary, to

_4200 K at 330 GPa, the outer-inner core boundary, are about 1000-1500 K

below this value. In the context of the outer-inner core boundary-phase boun-

dary hypothesis, this discrepancy implies that at least one boundary layer of

1000-1500 K exists in the mantle, possibly at its base in the D" region.

§I. Introduction

Temperature is perhaps the most influential and elusive of all thermo-

dynamic fields defining the physical state of terrestrial planetary interiors.

Being fundamental to the thermomechanical behavior and evolution of these

interiors (e.g., O'Connell and Hager, 1980; Janle and Meissner, 1986), it has

been a central part of innumerable modeling efforts (e.g., Stacey and Loper,

1984). Unsupported by independent means, however, the value of this modeling

is somewhat ambiguous. High-pressure and temperature experimental work on

cosmochemically or physically plausible constituent materials, such as Fe and its

alloys (e.g., FeS and FeO), has the potential to constrain the complete equilib-

rium thermodynamic "equation-of-state" of these materials and provide such

independent constraints. In this paper, we discuss some implications of recent

static (Fe and Fe0.0S , Williams and Jeanloz, 1986; FeO, Knittle and Jeanloz,

1087) and dynamic (Fe, Bass _t al., 1987; Fe0.gS , Anderson et al., 1987) experi-

ments, and their potential impact on the question of the temperature profile in

the earth's outer core (OC), and the temperature of the inner-core boundary

(ICB).

Birch (1952) firstnoted that his uncompressed density profile of the core

was ,-.,10-15% lessthan that of pure Fe (or Fe-Ni: McQueen and Marsh, 1966)
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along its Hugoniot at corresponding pressures. Knopoff and MacDonald (1959)

suggested that Birch's observation implied that Fe must be combined with one

or more elements, X i (e.g., H, He, C, N, Si, O and/or S), of significantly smaller

atomic number, in the core. This possibility has since accreted a vast literature

(see Jacobs, 1975; Ringwood, 1979; Stevenson, 1981) concerned with candidate

X i and their potential role in core formation, dynamics and evolution through

phase relations in the Fe-X i system. The relevance of high-pressure, high-

temperature experiments toward constraint of the temperature profile in the OC

rests on the hypothesis (Verhoogen, 1961) that the inner core (IC) is growing at

the expense of the OC, the ICB then being a phase boundary in the Fe-X i sys-

tem. From this perspective, if the OC mixture Fe-X i is a eutectic system, and if

its composition lies on the Fe-rich side of the eutectic, pure Fe or Fe containing

"small" amounts of some or all of the of the X i may crystallize out at the ICB

to form the IC, leaving the coexisting liquid more highly concentrated in the X i.

In this case, the ICB will be a compositional and a phase boundary, and the

temperature of the ICB should then be bounded above by the melting tempera-

ture of pure Fe and below by the eutectic temperature of the system at the

ICB.

To explore possible high-pressure phase relations of Fe-X systems, we use

the recent experimental results on the solid-liquid phase boundaries of Fe

(Brown and McQueen, 1986; Williams et aL, 1987), FeS (FexS: Brown et al.,

1984; Williams and Jeanloz, 1986; Anderson et al., 1987a) and FeO (FexO:

Anderson et a/., lg87a; Knittle and Jeanloz, 1987) to constrain models for Fe,

FeO and FeS solidi via a parameterization using Lindemann's law and the

Hugoniot states of these materials. In addition, we use the Fe melting data of

Williams and Jeanloz (1986), as given in Williams et al. (1987), to constrain an

Fe liquidus and the equilibrium thermodynamic properties of liquid Fe in the

context of a liquid-state perturbation model (e.g., Stevenson, 1980) for Fe.
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With these models, we may rationally extrapolate the experimental results for

these materials to OC pressures, and use these extrapolations to explore possible

equilibrium phase relations of Fe-S and Fe-O systems, in a similar fashion to the

work of Stevenson (1981) and Anderson et al. (1987b) on Fe-S systems.

§2. High=Pressure Liquid-State Model for Fe

At high pressure and/or temperature, the influence of repulsive interatomic

or intermolecular forces on the structure and properties of most liquids suggests

a high-pressure, temperature model for these liquids in which the constituents

interact only repulsively. A logical extreme of this idea is represented by the

"hard-sphere" model of a liquid (e.g., Hansen and MacDonald, 1975; Barker and

Henderson, 1976), which assumes the liquid is composed of perfectly spherical

"particles," each having a diameter d, which interact in a pairwise fashion via a

potential, ¢_s(r), of the form

oo r<d_b"s(r)= 0 r>d [2.1],
m

where r is the (radial) distance from the center of either sphere involved in the

interaction. The collective interactions between the liquid constituents are, to

some degree, correlated (i.e., nonrandom) and give the liquid an effective (short

range) structure. For a liquid of N constituents, occupying a volume V, which

interact in a spherically symmetric fashion, this structure is described by the

radial pair-distribution function, g(r), defined such that 4rpNr2g(r) is the number

of spheres r to r+dr away from the center of a given sphere in the liquid, where

#N _- N/V is the number density of spheres. In particular, note that gin(r), the

hard-sphere radial distribution function, is zero for r<d, since g(r) is propor-

tional to exp[-flC(r)], where fl _-_ 1/ksT , T is the absolute temperature, and k s is

Boltzmann's constant. X-ray diffraction and other techniques have found that
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the effective radial distribution function of many liquids, including liquid Fe at

standard pressure (e.g., Waseda and Ohtani, 1974; Gopal Rao and Sen, 1976;

Vorob'ev et al., 1977), is quite similar to g_(r), suggesting that the constituents

of these liquids interact in a "hard-sphere-like," radially symmetric fashion.

This observation, combined with the fact that, via statistical mechanics and

numerical simulations, the equilibrium thermodynamic properties of hard-sphere

liquids are well established (e.g., Barker and Henderson, 1976), suggests that the

corresponding properties of these liquids can be related, or referenced, to those

of a hard-sphere liquid (Zwanzig, 1954). Via the relation between the interac-

tion potential, canonical partition function, and Helmholtz free energy, this idea

leads to a relationship between the Helmholtz free energy of the liquid,

F_q(T,pN), and that of the equivalent hard-sphere system, Fm(T,pN) , of the form

Fliq _ Fmod _ Fns + Fn_r [2.2]

(e.g., Mansoori and Canfield, 1969). In [2.2], F_. r is the total pair-interaction

contribution to Fmod, i.e.,

fd °
F_rr _ 21rp_ ¢(r)_(r)r2dr [2.3],

where ¢(r) is the effective pair-interaction potential of the liquid constituents.

To use [2.2], we need expressions for g_(r), Fro, and ¢(r). There exists no exact

solution for g_(r), r_>d; among the approximate solutions, that formulated by

Percus and Yevick (1959; PY), which assumes that any two liquid constituents

are essentially uncorrelated at distances greater than r--d, agrees best with

computer simulations (e.g., Alder and Wainwright, 1957). This agreement has

motivated a wealth of analytic results for the thermodynamic properties of a

PY hard-sphere fluid, including Fro, making it the logical choice as a reference

system.
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Because we cover a wide range of pressures and temperatures, including

low pressures, we choose a pair potential representing both repulsive (high P,T)

and attractive (low P,T) interactions. In particular, we assume the so-called

"Double-Yukawa" potential (e.g., Foiles and Ashcroft, 1981)

e{e [2.4].

In [2.4], a represents the distance away from the center of each sphere where

the potential is equal to zero, i.e., ¢(a)--0, while k -1 is the characteristic

length scale of repulsive interaction, and w -1 that for attraction interactions.

Also, e is related to the votential energy _f _nt,_r_f_,_,_ o_ o,,,,il;_,_.._. -,_., -- ...t ..... ,,_,,_, separa-

tion. Physically, we expect k)w, since repulsion and attraction are dominantly

short and long-range interactions, respectively. In this case, note that ¢(r)>0

for r<a, and ¢(r)<0 for r>a. We use the Yukawa potential because 1) it is

fairly general, and 2) a number of analytic results exist for thermodynamic sys-

tems based on this potential via statistical mechanics, as we relate below and in

Appendix A.

For a liquid metal such as Fe, electronic processes may contribute to F;

consequently, we need to add a term Fel to Fmo d such that

Fmo d ---- Fm+ F_. r + Fel. As discussed by Stevenson (1980), for example, elec-

tronic contributions to Fli q may significantly influence the cohesive energy,

incompressibility and heat capacity of the liquid. We represent F,! by its low

temperature (T much less than the Fermi temperature) Sommerfeld expansion

(e.g., Wallace, 1072)

F,, = -!rT [2.5].
2

In [2.5], F is the density of electron states at zero temperature, related to the

electronic Gruneisen's parameter, qe, via the relation (e.g., Wallace, 1972)
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[ dlnr

%- I dlnp N } [2.6]

Hence, F is a function of density alone. Assuming % is constant, [2.6] implies

%r(p )= r(p ) [2.7],

and

and[A.88]),

T = E T*(p,@; k*,w*,¢) [2.8]

p__R
_" E p*(p,0;X*,w*,f,E,p_,Fr,'Te) [2.0]

respectively. In [2.8]and [2.9],we have k*=ka, the nondimensional repulsive

length scale, cv*__--.._cay,the nondimensional attractive length scale, Ü_-6PNd3, the

where PN, is some reference density at which F is known. The values of r and "Te

of the e and "7 phases of Fe have recently been calculated by Boness et al.

(1986). They argue that the values of F and % so constrained should work for

liquid-Fe at high pressures as well. We adopt their assertion in the calculations

From these ingredients, we can develop relations for the equilibrium ther-

modynamic properties of a homogeneous liquid, which we do in Appendix A.

Here, we are particularly interested in relating pressure and temperature to

model parameters, since we want to constrain a liquid-state model for Fe from

the melting data of Williams and Jeanloz (1986; see also Williams et al., 1987),

which are in the form of temperatures in the solid and liquid approximately

adjacent to the phase boundary at a series of pressures. From Appendix A, we

have the following relations for temperature and pressure in the liquid as a

function of the mass density of the liquid, p, and model parameters, i.e. ([A.65]
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equilibrium packing fraction of liquid constituents,

,

where N^ is Avogadro's number, and E-_e/ksr Also, R is Ryberg's constant, M

is the atomic weight, and Pr, Fr and % are a reference mass density, density of

electronic states at zero temperature, and electronic Grlineisen's parameter,

respectively. These last 3 quantities are constrained independently, and so held

constant during the fit. In particular, for Fe, we use Pr _-8352 kg/m 3,

F r _-_ 5 mJ/mol-K 2 and % -- 1.34. These are, respectively, the measured STP

ueu_tty oi _t,al, e__& EA6.,,.,_,o,o.y w_r,,-,,.,.'",, . oov s, ,,ue t:n_cu_nt,,::u electronic at zero

temperature and the temperature and electronic Griineisen's parameter (Boness

et al., 1986), of e-Fe. Since r is a function of density only, we may recenter it

to the standard pressure, melting temperature density of liquid Fe, 7015 kg/m 3

(Drotning, 1981). In this case, we have F(7015) -- 6.31 mJ/mol.K 2, which is

reasonably consistent with F(7015)_ 6.42 mJ/mol.K 2 for liquid Fe from the

work of Yokoyama et al. (1983). With these 3 parameters fixed, [2.8] and [2.9]

relate 4 variables (T,P,p and _/) and 4 constant unknowns, or parameters

(E,)_*,w* and f). We may eliminate either p or _/ between [2.8] and [2.9] to

obtain

T -= "r(P,_/; E,X*,w*,f) or T _--- T(P,p; E,X*,w*,f) [2.10],

respectively. Since we have no other relation(s) among the variables, [2.10]

implies that we must choose either p or ¢? as a parameter of the fit. This choice

is not difficult, since p must change with pressure and temperature along the

liquidus. Assuming that _/is constant along the liquidus is not unfounded; com-

puter simulations imply that ¢/_0.45 along the liquidus (Alder and Wainwright,

1957), regardless of the density. Assuming this would tie the variation of the

hard-sphere diameter, d, directly to that of the density along the liquidus, since
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by definition of the packing fraction, d then varies inversely with the cube root

of the density. So, with _/as parameter of the fit, we have

TM-- T(P; X*,w',_/,_',E) [2.111

giving us five parameters to constrain from the fit: E, 9, _,*, w* and ¢.

We compare models and data in the context of the standard Poisson statis-

tic (e.g., Bevington, 1969; Press et al., 1986), X 2. In our case, it is given by

_ 2 [2.121
k=l [ JPk)]2

In this relation, T_=(Pk) , T_,_(Pk;a ) and aT(Pk) are the experimental and model

melting temperatures, and the experimental uncertainties, respectively, all at a

particular pressure, Pk. Also, N is the number of data points. T_._ is given by

[2.11]. The "vector" a is the model parameter vector, with components ap, in

our case given by

ap _ { X*, w*, _/, _', E} [2.13].

We minimize x2(a) using a combination of 1) multidimensional Golden Section

(GS) search to explore the x_(a) hypersurface for the distribution of local

minima, and 2) the Levenburg-Marquardt (LM) algorithm (e.g., Press et al.,

1986) to solve [2.121 locally and iteratively to find the "best fit" values of the

ap, ap(min) , defined by

This algorithm searches down successive independent (i.e., conjugate) gradients,

and terminates the iterative process when either a preset value of X 2 (56, which

is twice the "best" theoretically-expectable value; see below) and/or X 2 does not

decrease by some chosen amount (1%) between successive iterations. We

present examples of "best fits" in Figure 2.1a, along with the Fe melting data of
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Williams and Jeanloz (1986), as given in Williams et al. (1987), and compare

these fits with the Fe shock temperature results of Bass et al. (1987). In their

diamond cell experiments, Williams and Jeanloz were able to directly observe Fe

melting; the "Fe-solid" points correspond to the highest temperature at which

Fe was entirely solid, while those labeled "Fe-liquid" correspond to the lowest

temperatures at which Fe was entirely liquid. We use all these points (28) as

given, along with their associated uncertainties, in the fit. This allows the LM

algorithm to find the "best" compromise among them, each datum influencing

the fit according to how "well" or "poorly" they are determined, as indicated

by their associated uncertainties and implemented in the X 2 statistic. The first

fit, shown by the dashed line, represents an entirely unconstrained fit, i.e., all

parameters are allowed to vary during the fit. This fit has a X 2 of 150, with

parameter values ),*_8.50, w*_--0.361, _/-_-0.451, ¢-_0.0808 m/kg]_, and

E---203 K. The value of X 2 for a "good" fit is roughly given by the difference

between the number of data and fit parameters; in our case, then, we might

expect X2--_23 at best. That our best fit is six times this value is not completely

unexpected, considering the amount of "scatter" in the data. With this model

fit, we calculate a number of liquid-Fe properties using the relations detailed in

Appendix A and discussed below. Of particular importance is the density of Fe

along the liquidus, p_, given by, from [2.9]

p_ -" P_(P; ×',_',_,_,_,,_,rr,%) [2.14],

which we plotted in Figure 2.1b versus pressure, along with perhaps the best

constraint we have on Fe at high-pressure, i.e., density along the Fe Hugoniot.

We have also plotted the density of solid Fe at the liquidus temperature, using

the Hugoniot density as reference via the method discussed below; these points

are labeled "Fe-solidus" in Figure 2.lb. With the expectations that the density

of liquid Fe should 1) be less than that of solid Fe at the same pressure and
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Figure 2.1. Liquid state model fits to the Fe melting data of Williams and

Jeanloz (1986). Part (a) depicts the temperature fits versus pres-

sure. The dashed curve represents the best unconstrained fit to

the data, while the continuous curve represents the best fit with

the liquidus density constrained to be less than or equal to that of

the solidus, as referenced to the Hugoniot, as shown in part (b).

Each solidus or hugoniot point (rectangle) represents +20 kg/m 3

and 4-2 GPa. Vertical lines represent pressure at core-mantle

boundary (136 GPa) and outer-inner core boundary (330 GPa).
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0

D

0

temperature (for a positive Claperyon slope), and 2) approach the density of

solid-Fe along the phase boundary at high pressure, this fit that looks reason-

able in T-P space appears highly unlikely in P-p space. This fit is characteristic

of all local minima on the X 2 hypersurface investigated in a completely uncon-

strained fashion.

Given the unacceptable liquidus density prediction from the completely

unconstrained fits, we are compelled to constrain the density of liquid-Fe along

the liquidus to be less than or equal to that estimated for solid-Fe at (approxi-

mately) the same temperature during the fit. Among the model fits satisfying

this constraint, the one represented by the continuous curve in Figures 2.1a and

2.1b is "most" consistent with other information on liquid Fe, as we discuss

below. This fit has a X 2 of 250 and fit parameters k*_8.02, w*--0.872, _?----0.49,

_0.0605 m/kg_ and E----2190 K. Note that this is a significantly worse fit than

the first, on the basis of X 2 alone. Note that this fit predicts significantly higher

temperatures along the Fe liquidus than the first, a reasonable result in order to

have a smaller liquidus density at the same pressure. This fit also predicts a

much higher (200-1000 K) melting temperature for Fe between 136 and 330

GPa than most previous predictions (e.g., Brown and McQueen, 1986; Ander-

son, 1982; but see Abelson, 1981; Bass et al., 1987; Williams et al., 1987). Both

of the fits imply that liquid Fe "ion-ion" interactions are strongly repulsive; this

is consistent with the observation that liquid-Fe is a "good" hard-sphere fluid.

These results imply that the variation of density along the phase boundary may

provide a more sensitive measure of model parameters than the coincident vari-

ation of temperature.

If we extrapolate the properties of liquid Fe predicted by this last model fit

to standard pressure (SP, 0.1 MPa), we may compare them with data constrain-

ing these properties or other calculations, as appropriate. The results of this are

presented in Table 2.1. Recall that we have used only the high-pressure data of

I
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Table 2.1. Standard Pressure (0.1 MPa) Liquid Fe Properties.

Property Symbol

Melting temperature T M

Mass Density p

Molar Entropy S

Packing Fraction_ _/

Heat capacity, constant V C v

Isothermal Bulk Modulus K r

Gruneisen's parameter '7

Isentropic Bulk Modulus K s

Thermal expansion c_

Heat capacity, constant P Ce

Bulk Velocity v_

Electrical Resistivity Pe

Shear Viscosity /J

Thermal Conductivity k

Self-Diffusion D

Experimental

18096

7015 b

99.7 c

0.45 d

33.3*

2.44 e

II0 g

88 b

46.6 i

3930 i

1.4 t

2.1 •

32*

37.1 _

89 d

1.67 !

136 h

122' 83 d

4400 k

4.8-7.0 m

Models

1910_
6857

91.6

0.49

39.0

87

1.62

111

89

49.8

4017

2.5

34

4996

SI Units

K

kg/m 3

J/mol.K

J/mol'K
GPa

GPa

J/mol'K

m/s

#uf_.m

mPa's

W/m-K
nm2/s

tUnless otherwise indicated, all model values are from present work.

yFit parameter.

• Robie et al. (1978).

b Drotning (1981).

c Hultgren et al. (1973).

d Yokoyama et al. (1983).

e given in Stevenson (1981).

! calculated from "7--'_ aKs/pCp.

t calculated from K s --_pv_ using v_ from i

A calculated from K s = pv_ using v¢ from k

i Desai (1986).

l Kurz and Lux (1969).

k Filipov et al. (1966).

IBusch and G_ntherodt (1974).

"given in Gans (1972).
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Williams and Jeanloz (1986) to constrain the best fit, i.e., no other SP liquid Fe

properties besides "_e and F(p_r ) constrain it. Notable discrepancies between

experimental and model fit values include the first five quantities listed in Table

2.1, i.e., the melting temperature, liquid density, the molar entropy, the equilib-

rium packing fraction, and the molar heat capacity at constant volume. The

fact that the molar entropy falls below the experimental value is partially due

to the relatively high value of _/favored by the fit, since the entropy of the

hard-sphere reference system decreases with increasing _/ (via [A.43], Appendix

A). Attempted fits with _/ fixed at 0.45, the valued favored by liquid-state

numerical simulations (Alder and and Wainwright, 1957), predicted higher

liquidus temperatures (>8200 K at 330 GPa: see liquidus variation with _/ in

Figure 2.2a) at high pressure. Note that temperature along the liquidus is much

more sensitive to _/than density, as shown in Figures 2.2a and 2.2b. Since we

have held F(p_) and "_e constant in the fits, it is possible to "improve" the

agreement between some of the fitted and experimental properties by adjusting

these parameters away from their independently established values. Another

reason we should have some discrepancies between the model fit and liquid Fe

properties is that we have not included an explicit contribution to the

Helmholtz free energy at zero temperature from the Fe valence electrons (D. J.

Stevenson, personal communication). This would introduce further parameters

for the fit to constrain, and given the data scatter and relative insensitivity of

the model parameters to the temperature along the phase boundary, we refrain

from doing this.

§3. Hugoniot and Solid-State Calculations

We estimate the high pressure and temperature states of solid Fe, FeS and

FeO from an equilibrium thermodynamic model referenced to the experimen-

tally constrained shock-compressed (Hugoniot) states of these materials. Since
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Figure 2.2. Temperature fits (part a) versus pressure for different values of the

equilibrium packing fraction, _, around the best fit value. The

corresponding liquid density along these curves is shown in part

(b).



- 325-

_J I I I

q

O0001

\

\
\

oogz, o00g

(2I) _.m_,ez_ dtU_.l,

0
LrJD

CO

0
-_..

CX2

o9

o
0"_



- 326-

\

\

n

Om \

n

Dm

n

[]

' I :
| *

! •
!

I I

\

•. \

°._

•._

ooggI ooggl 0096

(8uII _H) -_!suaG

0
L_

0

r_

m
m

_0

FO

0099



- 327 -

we are interested in the high pressure, temperature states of initially semicon-

ducting or metallic solids that are all likely to be metallic at high pressure, we

construct a model Helmholtz free-energy (HFE), FiT,p), from contributions

reflecting the influence of both lattice and electronic processes. We assume the

Debye model to represent the harmonic lattice free energy, the low temperature

(T much less than the Fermi temperature) approximation to the electronic free

energy,-2F(p)T2 (as above for liquid Fe), and the high-temperature (T greater

than the Debye temperature, OD) approximation to the anharmonic free energy,

A2(P)T 2, where A2(p) is related to the temperature dependence of the phonon-

freauencv spectrum at constant pr_,,r_ _nr] h;gh ¢._rnr_Paf,,r,_ (V_7_ll,_,,o l n'ro_

Neglecting potential lattice-electron and band-structure contributions to the

molar Helmholtz free energy, F(T,p), we have

F(T,p) ---_ ¢(p) + 3uR _)_D + In[1 -e-XD] -- ED(XD) T

+ A2(P)T 2- {-F(p)T2 [3.1].

In [3.1], ¢(p) is the zero-temperature lattice potential energy function, eD(p) is

the Debye temperature, XD --" xD(T,P) is the ratio of the Debye temperature to

the absolute temperature, v is the number of atoms in the chemical formula,

and F__(_) is the Debye internal-energy function (e.g., Gopal, 1966), given by

_o _ x3F__(_) ---- -- dx
[ex- 1]

{9D is related to a lattice Gr{_neisen's parameter, "_D, by (Wallace, 1972)

% = /
dlnO D

dlnp }t

[3.2]

[3.3].

If we assume
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then we may write

qD
Pi

[3.4],

[3.5].

{4S _ 3vR _- ln[x_] + + CZT

2) the high-temperature molar heat capacity at constant volume:

[ _S ) --3vR [1 1Cv"_T "_ v_ -_-_-X_]+ f_T

[3.7]

[3.8]

The high-temperature (T>OD) anharmonic contribution to the free energy,

A2(p)T 2 (Wallace, 1972), has the same temperature-dependence as the electronic

contribution to F, as given by [2.5] in the last section. In this sense, at least,

the high-temperature anharmonlc and low-temperature electronic contributions

• -1-e--_. -_.... -e--L - t 1 ..... I -,_ r_-a P1
ar_ lnul_m_m_uavle. By anmogy wl_n [z.o], we assume, for slmpiiclty, that

_d

In the calculations presented below, we constrain the values of f_(Pi) and _o

empirically by requiring the h|gh-pressure-phase (/_) Hugoniot and melting curve

of Fe, Fe8 and FeO to intersect at an "appropriate" pressure. As discussed in

the previous section, we have a further constraint on F(p) for Fe from the work

of Boness et al. (1986).

Since we are working at high temperatures, i.e. T>OD, we may use the

high-temperature approximation (XD_--_OD(pH)/T--*0) of the harmonic contribu-

tion to F(T,p). Detailing this approximation in Appendix B, we obtain from it

expressions for 1) the high-temperature molar entropy:
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and 3), the high-temperature isothermal bulk modulus:

[3.9]

with

p -l_-p ] +p2 [ d2¢
dp2 •

From these expressions, we have

v_

where cv = Cv/M is the specific heat at constant volume. From [3.8] and [3.10],

we have the high-temperature equilibrium thermodynamic Gr_neisen parameter

"Y = ffcvcv= % + (w__%)_C__vT [3.11].

Note that "7, as given by [3.11], is very weakly temperature-dependent, since

w_ff D (at least for Fe) in the range of pressures and temperatures of interest.

On this basis, we assume in what follows that -/a function of density alone, and

interest. From [3.9] and [3.10], we have theequal to % in the solids of

coefficient of thermal expansion

a = _ [3.12].

Lastly, [3.8], [3.11], and [3.12], combined with

Ks %
=- = (1 + a'_T) [3.13]

Cv

provide the isentropic bulk modulus, K s, and molar heat capacity at constant

pressure, Cp. We use these expressions, particularly S, a and Cp, in what fol-

lOWS.
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Assuming that Fe, FeS, and FeO shock compress as fluids, we calculate the

pressure, Pw and density, Pw of a given Hugoniot state on the basis of the exper-

imentally constrained shock velocity, U, material velocity, v, relation, i.e.,

U--ai+l_,v, via the shock-wave "equation of state"

(for bir_a< 1) with

[3.14]

#---D(PH)_--- 1+
2 ,(PH-P,)

(e.g., McQueen et al., 1967). In this relation, p_ is the uncompressed density of

the material occupying the low-pressure-phase, a, and _a----- 1--P'_/PH is the rela-

tive compression, PH is the Hugoniot pressure, Pi is the initial pressure, and the

subscripts "i" and "H" stand for the initial (Ti, Pi) and Hugoniot states, respec-

tively. With the assumption that the Hugoniot state is one of thermodynamic

equilibrium, we construct an internal energy balance in the pressure-density

plane to calculate the temperature of the Hugoniot state, T H (e.g., McQueen et

al., 1967; Ahrens et al., 1969), of a high-pressure phase, fl, of the material. This

is represented by the relation

T_TXCv(T,PH ) dT -- Ae v [3.15]

where

1

Aev _- 2_= n_ [P. + Pal - [A_e_-= + A%] [3.161

is the difference in specific internal energy between the Hugoniot and principal

isentrope of fl at constant volume (density, PR)- Note that all quantities dis-

cussed in this section refer to the _-phase, unless otherwise designated. In [30],

Ae_ a _ e(_,_)- e(s_=,_ =) is the difference in specific internal energy between c_
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and/? at T i and Pi, and Ae_ ---- e(s,,pH ) -e(si,_, ) is the change in specific internal

energy along an isentrope of/_ with specific entropy si, referenced to a density Pi.

Also, T(_,PH) represents the temperature along this isentrope at a density Pa, the

Hugoniot-state density of fl, and Xv, ----- Oo/T_. Assuming TH> OD, we may sub-

stitute [3.9] into [3.15] to obtain a cubic equation for T H with solution

1 1

a(p )

(Svendsen et al., 1987; Chapter I, §4), with

2

p_4 _('_"_0. + 3_-_,P-_ A(px)

q_

and

[3.17]

OuRo" "A(p )--= + + otp +

calculate Ae_(pH)_-Ae_(pi,K_,K_ ,p_) using third-order spatial finite-strain

T(si,PH ) from the relation

assuming "7 -- To(P). In this case, the relation for T(si,pH ) is of the same form as

that for OD(p) given by [3.10] above. With Ti-----298 K, Pi_0.1 MPa (i. e., STP),

and p_', at and _ constrained from pressure-density shock-experiments, we see

jOinT } _--""7 [3.18]

We

theory. We estimate I_ and I_',, the STP isentropic bulk modulus and its first

pressure derivative, respectively, of the high-pressure phase, from the meta-

stable U-v relation of the high-pressure phase (McQueen et al., 1967; Svendsen

et al., 1987), which in turn is constrained from p_, af and b i. Also, we calculate
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0

e

from [3.17] that T, depends on Ae_ _ and 6 STP properties of the high-pressure

phase,/3, i.e.

{Pi' /_ ie_ , _D(Pi), qD, _D(_l), _'_(Pi), ('_} [3.19]

Of these, T. is most sensitive to Pi, Aie_ and 12(pi) (Svendsen et al., 1987). To

reduce the number of free parameters, we assume %--1 for Fe, FeS and FeO,

w=l for FeS and FeO, and w=1.34 for Fe. The parameter w for Fe is chosen

in order to facilitate comparison of the _(Pi) values for Fe obtained below with

the values of F(pi) and % calculated by Boness et al. (1086) for e-Fe and "7-Fe.

Since _ for Fe, FeS and FeO FeS, FeO and Fe are constrained by previous

work, we. fix it _ wpll W_ _,_=,,o_.. _a-_ from the energy '--'......................... u_l_,,_ used to

obtain T. in the limit PH'*Pi assuming 3 is a function of volume only (Svendsen

et aL, 1987). We have OD for e-Fe from Andrews (1973), and we estimate it for

the the high-pressure phases of FeS and FeO from the relation

47rM J m

by assuming the mean sound velocity of the high-pressure phase, Vm, is equal to

the bulk velocity of the high pressure phase, v¢, where v¢ = _/"_i. This

estimate is an upper bound to the actual value of Or,, since it ignores the contri-

bution of transverse vibrations to v m. All of these parameter values are given in

Table 3.1, leaving us with 2 "degrees of freedom", i.e., %(p_) and f_(p_), when

calculating Trr

@

@

Solidus Calculations and Fits

Following many workers (e.g., Stacey, 1977), we use Lindemann's law, i.e.,

dim / __ 2 TM (_t_ 1
{dp_ JLindemann - "_')

[3.2ol
p:,

@
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Table 3.1. High-Pressure Solid State STP Parameters for Fe, FeS and FeO.

Property Symbol Fe FeS FeO SI Units

Molecular weight M 0.055847 • 0.087907 • 0.071846 = kg/mol

Impedance match

Mass density pi a 78506 4613 c 5554 _ kg/m 3

Intercept, U-v relation ai 3955 b 3865 c 4070 e m/s
Slope, U-v relation bi 1.580 b 1.351c 1.503 e

High-Pressure solid phase

Mass density Pi

HPP-LPP SIE t difference _ei _-a

Intercept, U-v relation ai*

_lope, U-v relation bi*

[sentropic Bulk Modulus
_OKSl OP )_

Debye temperature 0 v
ALE§ exponent w

8352 / 5600 t 6050 'r kg/m 3

70t 800 A 145 i kJ/kg

4517A 5327 A 4823 i m/s
1.57 i 1.32 k 1.49 h

170i 159 i 141 i GPa

5.28 j 4.28 ./ 4.95./

385k 674 t 670 t K

1.34 m 1.0 n 1.0 n

Hugoniot-Solidus

_Ielting Temperature T u 1800
AE coefficient 12 3.35

Thermal Expansion a 45

Debye -y "Tv 1.93

1468 1652 K

11.43 7.54 mJ/mol-K 2

155 100 pK -1
1.50 1.90

tSpecific internal energy.

• Robie et al. (1978).

b Brown and McQueen (1986).

c Brown et al. (1984).

d Jeanloz and Ahrens (1980).
=Fit to U-v data in d

I Jephcoat et al. (1986).

e Pichulo et al. (1976).

§Anharmonic-electronic.

Afrom Pi and U-v relation (see text).

i assuming Ks_-pai 2.

./from Ks' _--_4bi*-1 (Ruoff, 1967).

k Andrews (1973).

t from Pi and ai* (see text).

m % of e-Fe (Boness et al., 1986) assumed.
n assumed.
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to parameterize the solid-two phase boundary (i.e., solidus). In [3.20], -ysM is

the lattice Griineisen's parameter at the melting point, given by %(p_) in the

context of the Debye approximation used in this work, p_ is the density of the

solid along the phase boundary, and TM is the melting temperature. Since we

assume above that "ID(P) is given by usual power-law relation ([3.5] above), [3.20]

may be integrated to give

where p_ _-pS (T_,Pi) is the density of the solid at the melting temperature

TM(p_)-_T_(P_). Since the equilibrium thermodynamic properties as developed

from [3.1] and its high-temperature approximation (Appendix B) are functions

of temperature and density, we may calculate the variation of any of these pro-

perties, ¢(T,p), with temperature at constant pressure from the relation

¢(T,Pref) = ¢(Tref,Pref) + "_ p

O

where

[3.23],

and Pref and Tre f are a pressure and temperature at which we know ¢. In par-

ticular, with ¢__.p,, the density of the solid along the solidus, p_, may be

estimated from the density determined experimentally along the Hugoniot, Pn,

via a simultaneous solution of [3.21] and

{Cp_(P) -- pn(P) exp - a[T,p(T,P)ldT [3.24]

for TM(p_ ) -- TM(P ) and p_(T_ = p_(P). We evaluate [3.241 numerically during
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the simultaneous solution, using [3.12] for c_(T,p) and [3.17] for T_r This solu-

tion is subject to the initial conditions

and

= pi[1- %)] [3.25]

= %(p, = [3.26],
[1- Wi)] 

where T_t--TM(Pi) is the standard pressure melting temperature of the

material, and c_ -- a(Ti,Pi) the STP coefficient of thermal expansion. By com-

bining the solidus and Hugoniot temperatures and densities via [3.17], [3.21] and

[3.24]-[3.26], we have a simultaneous calculation for TM(P), p_(P) and T.(P)

dependent on 4 "free" parameters: %(Pi), fl(Pi), c_ and T_. To fit the solidus

calculated in this fashion to the melting data, we again employ the X 2 statistic,

as given in [3.1], with T_._=T_._(P;a) now given by [3.19], to fit a Lindemann

solidus to the Fe melting data of Williams and Jeanloz (1986), and compare this

fit to the Fe shock temperature results of Bass et al. (1987). For the FeS and

FeO solidi, however, we use [3.19] to calculate, rather than fit, these solidi

because there is only one high-pressure datum for each of these materials

currently available to the public. We display the results of the Fe fit, and the

FeS and FeO calculations in Figure 3.1. The FeS melting point at 50 GPa is

from the work of Williams and Jeanloz (1986; 3000 K), and this is consistent

with the results of Anderson et al. (1987a), while that for FeO is from the work

of Knittle and Jeanloz (1987), who state that "... at approximately 100 GPa the

melting temperature of FeO exceeds 5000 K..." On this "factual" basis, we

assume 5100 K. The best fit Fe-solidus shown in Figure 3.1 has a _:2 of 70;

parameters for these curves are given in Table 3.1. This X 2 is substantially

lower than that of the best fit Fe-liquidus partly because the fit via [3.17], [3.19]

and [3.22] is numerically stable only above 20 GPa, and so we fit the 19 data
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0

Figure 3.1. Solidus fit to Fe melting data, and calculated FeO and FeS solidi

constrained by corresponding data. The FeO datum at 100 GPa

is from the work of Knittel and Jeanloz (1987), while that for FeS

at 50 GPa is from Williams and Jeanloz (1987). The FeS curve is

also consistent with the lower pressure constraints on FeS melting

from the shock-wave experiments of Anderson et al. (1987).



- 337 -

_J

7

O000T

i

J

o

l l
l

l
I

l l
• I
l

l
k l

l
l

• k

I
I
l

k I
l

•

"\

• "\\
.\

• \\

[,v., [.v., _ [,v., [,v., • .

c:_m ,-, ,',,,,,-- c:)c)lu

• -,b ,
.a-o

0 0 ""
m m 0

I,

• I I

I
I

I

rn |
I I I

oogL o00g oogg

(2,1)  .m: ez du1 .T.

I
0

0
-D-

I

0

0



- 338 -

0

0

above this pressure. In addition, the largest differences between the solidus and

Hugoniot densities (temperatures) occur at low pressure; consequently, the

corrections are largest at low pressure, and hence most suspect. Notice the the

solidi (Figure 3.1) curve down too much to asymptote out at the SP melting

temperature without a seemingly unphysical change in curvature and slope.

The use of a linear relation between density and temperature at SP, [3.20], also

contributes to this. A quadratic or other higher-order relation would give more

reasonable asymptotic behavior, but of course at the expense of yet more

parameters to constrain.

Comparing the density-constrained Fe liquidus in Figure 2.1 and the best-

fit solidus, we see that the best-fit liquidus lies at a higher temperature than the

corresponding solidus. If we fit the "best" Fe-liquidus model with a Lindemann

solidus, we obtain _(pi)--1.90, f_(pi)=2.6 mJ/mol'K 2,

c_-- 58.4/_K-1,T_-- 1810 K and X 2-- 125. However, if we require

12(pi)----5 mJ/mol'K 2, the value of F(Pi) calculated theoretically by Boness et al.

(1986) for e-Fe (here adjusted to the density of e-Fe from Jephcoat et al., 1986),

in a fit to the data of Williams and Jeanloz (1986), we obtain %(_)--1.79,

o_--54.5/_K -1, and T_m_1809 K, with X2--_75. These last two fits are

displayed in Figure 3.2, along with the associated Hugoniots. Since PM and p_

are connected via a, which is initially small, and decreases with pressure (see

below), it turns out that the solidi are not very sensitive to fl(pi). Experimental

constraints on the pressure at which liquid-solid phase boundary and high-

pressure phase Hugoniot of Fe (245 GPa: Brown and McQueen, 1982) and FeS

(125-150 GPa: Brown vt al., 1984) intersect provide a stronger constraint on the

value of i2(pi) , which controls the slope of Tx(P), as implied by [3.17]. This

intersection is shown for the two Fe-solidi displayed in Figure 3.2. We apply

this as an additional constraint in the Fe solidus fits, and the FeS solidus calcu-

lation. To our knowledge, there exists no experimentally motivated range of

Q
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Figure 3.2. Intersection of two Fe Hugoniots and melting curve at 245 GPa.

"OM" represents value of fl in units of J/mol.K 2.
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pressures over which the FeO Hugoniot and melting curve are likely to inter-

sect, but it is almost certainly above 70 GPa (Jeanloz and Ahrens, 1980; Knittle

and Jeanloz, 1987), and probably above 245 GPa, where the Fe Hugoniot and

solidus apparently intersect, since the solidus extrapolated from the datum of

Knittle and Jeanloz (1987) is ___,1000 K above the solidus at a given pressure

above 100 GPa.

With parameters values established by the fit, the solid-state model pro-

vides us with specific values for the equilibrium thermodynamic properties as

functions of temperature and density. However, since we can calculate

p----p(T,P) via

p(T,P) ---- p(TwP ) exp a[T,p(T,P)]dT [3.27]

at high pressure and temperature, referenced to the Hugoniot state (Twe.,ps),

the model functions then depend on pressure and temperature. On this basis,

we use the Fe solidus fit (Figure 3.2, dash curve) to the constrained-density Fe

liquidus obtained in the last section to calculate the equilibrium thermodynamic

properties of solid Fe at the melting temperature as a function of pressure and

compare them to the corresponding liquid-Fe properties in Table 3.2. We note

that e-Fe is probably not the solid phase in equilibrium with liquid-Fe; above 5

GPa, ff-Fe is most likely the solid phase of Fe coexisting with liquid Fe (e.g.,

Anderson, 1982). We have tacitly assumed that this is of no consequence at

high pressure; even if it were, _Fe is not sufficiently well characterized at high

pressure for us to distinguish it from e-Fe at high pressure.

For the phase relations discussed below, we are particularly interested in S,

the molar entropy, and Cp, the molar heat capacity, of the liquid and solid.

From Table 3.2, we have AS_-'----S_-S_--8.3J/moI.K(0.99.R) and
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Table 3.2. High-Pressure Solid & Liquid Fe Model Properties.

P_-_136 GPa

(CMB)

Hugoniot Solidus Liquidus

3063 5007 4937

11250 10880 10720

78.1 96.1 104.7

30.2 34.8 41.3

677 584 630

1.40 1.43 2.41

713 654 857

12.6 16.8 30.3

31.8 39.1 56.2

7958 7702 8943

9

89

6645

P_--_330 GPa

(ICB)

Hugoniott Solidus

9275 7219

12900 13060

109.2 101.1

38.2 36.8

1386 1495

1.27 1.26

1518 1593

8.1 7.2

41.9 39.2

10850 11040

Liquidus

7296

13220

108.9

42.1

1324

2.54

1792

19.1

56.9

11640

14

133

8488

SI Units

K

kg/m 3

J/mol-K

J/mol.K

GPa

GPa

_uK-1

J/mol-K

m/s

mPa.s

W/m.K

nm2/s

t- Metastable e Hugoniot.
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AC_'----C_,-C_,--17.1 J/mol-K (2.06.R) at 136 GPa, while

AS -'=7.S J/mol.K (0.94"R)and Z C  '=17.7 J/mol.i (2.1a.R)at 330 CP .

These compare with AS_-*----7.7 J/mol-K(0.93"R) (Desai, 1986) and

AC_a_ 4.2 J/mol-K (0.51"R: Hultgren et al., 1973) at SP. A number of

theoretical and experimental studies (see, for example, Stishov, 1975) on elemen-

tal compounds suggest that 1) the value of the entropy of melting, AS l-s,

varies little among these substances, and approaches R at high temperature, 2)

AS/-8 varies with the volume change upon melting, Av l-a , such that AS/-'--*

0.693 (i.e., In2) R as Avt-" ..-*0. In the context of a simple cell order-disorder

model (Stishov, 1975), we note that AS t-a --_R for complete disorder (i.e., one

"atom" per ceil, no short-range order) among the liquid constituents, while

AS t-a ,--,0.693R for pair ordering (i.e., up to two atoms per cell, randomly occu-

pied cells, short-range order). In addition, Gschneider (1964) has found, for a

number of close-packed monatomic solids, that AS t-a ,_1.1523"R. Our results

are somewhat contrary to this, since we calculate high-pressure values for AS_ -s

of the same magnitude as the SP value. As for the large increase in AC_A a with

pressure calculated here, we have no theoretical explanation at this point, but it

is at least partly because "7 increases with pressure in the liquid (Tables 2.1 and

3.2) but decreases with pressure in the solid. This behavior for "7 is not unex-

pected (Knopoff and Shapiro, 1970). Also, the thermal expansion of the liquid is

about twice that of the solid along the phase boundary. With these results, we

may now address phase relations in Fe-S and Fe-O systems.

§4. Fe-FeX Phase Diagrams and Implications for the Core

The results of the solidus and liquidus models given in the previous section

for Fe, FeS and FeO may be used to calculate ideal phase relations between

liquid and solid Fe-X mixtures, in the context of the following model. We

assume that these mixtures coexist in thermodynamic equilibrium, i.e.,
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0

0

T t ----T ----T a

pt __p__ ps [4.1],

where the superscript l denotes a property of the liquid, and superscript s a

property of the solid. The equilibrium chemical potential for component i in

phase a (i.e., solid or liquid) is defined by

p_(W,P,x_) _ p_(T2,1) + RWlna_(W,P,x_) [4.2]

(e.g., Prigogine and Defay, 1954). In this relation, p,.a(T,P,1) is the chemical

potential of pure i in phase a, a_(T,P,x_) is the activity of i in the phase-a

mixture, defined by

a_(T,P,x_) -- k_(T,P,x_) x_, [4.3]

where k_ is the activity coefficient, and x/a the mole fraction, of component i in

phase a.

Following Stevenson (1981), we assume that both the liquid and solid Fe-X

mixtures are fully associated, i.e., FeX _ Fe + X in both phases. This implies

that FeX is a distinct, energetically favored species, along with Fe and X, in

both phases. In this context, Prigogine and Defay (1954) have shown that the

chemical potentials of the species Fe and X are equal to those of components Fe

and X, implying that,

(T,P,x a) -- p_(W,P,x a) + _(T,P,x a)

p_ (T,P, 1) + RT lna_: (T,P,x a)

[4.4]

[4.5],

where /_x is the chemical potential of FeX in phase a, and we have defined x a

as the mole fraction of X in phase c_; then 1-x a is the mole fraction of Fe in _.

Substituting [4.2] into [4.4] for Fe and X, we obtain, from [4.41 and [4.5]

a_ -- a_ a_ e -BA/_x = )_ kxa xa(1-x a) e-Bh_x [4.6]

O
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O

where B----1/RT, and we have defined

A_x (T,P) ---_ _F,_x (W,P, xa=l) - _(T,P, xa--0) - _x_(W,P, xa=l)

Now, by definition, a_ must be unity when x a___.l

condition" into [4.6], we have

[4.7].

Putting this "boundary

[4.8].

With this, a_x becomes

-4{ / Xa(1--X a) [4.O],

and this is the expression we require to use [4.5] for _uF,ax. Now we turn to phase

equilibria in the Fe-FeX subsystem.

The equilibrium liquid-solid phase boundaries in the Fe-FeX subsystem are

defined by (from [4.113 )

_(T,e,x t ) -- _ (T,P,x') [4.10]

and

(T,P,x t ) -- _ (T,P,x')

Substituting [4.2], with i----Fe, and [4.5] into these, we obtain

)_(1-x / ) -- )_ (1-x')e -BA_'_-"

)_,)b_ X'( 1-xz ) -- X_ X,_x a (1-X')
(÷)x; (÷)

A_-, (T,P) --/J_(T,P,0)- _ (T,P,0)

[4.11].

[4.121

e -BA"_-° [4.13],

[4.14]

and

where

and
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A/_x-' (T,P) -------/_ (T,P, 1) - _ (T,P, 1) [4.15].

(T_.,p)--_A/_x (W_c_x,P)----0 by [4.113. Following StevensonNote that A/_-' __ l-,

(1981), we expand A/_-° (T,P) and _/_" (W,P) at constant pressure about the

__I
states {T__T_, P, x t _x _ _---0} and {T-=-T_ P, x I ---_x8 --_}, respectively, to

second order in (T-T_, i.e.,

A,_-,(T,P) _-_ T(_-I)IAS_-' (T_,P,0)-1AC_ (T_,P,0) (_-1)} [4.16]

and

Au '-° (T.P) ,'¢ T(F.Forl)

(_,x_P,_) - (T_._P,_)
[4.17],

where AS]-'--_-AS]-'(P,T_, ,x: _---x' ) and ACp.,'-" ___AC_;". (P,T_, ,x' _---x' ) are

the contrasts in entropy and specific heat at constant pressure of component i

between liquid and solid phases at the indicated reference conditions. Also, we

have defined _ _ T_/T and _F_x----- T_JT.

Following Stevenson (1981), we now apply [4.14] and [4.15] to the case

where Fe and FeX mix ideally in the liquid state. In this case, we have

k_ -- X_ -- 1 for all x I . Putting these into [4.12] and [4.'13], we have

(1-x / ) _--- )_ (1-x')e -B'x_'_'-' [4.18]

_nd

x_ (l_xl) ._ )_ X,_ x' (l-x")e -BA_s_-' [4.19].
(÷)

Further, we assume that Fe and FeX are completely immiscible in the solid

state. In this case, x 6 _-- 0 on the Fe-rich side of the phase diagram, as given

by [4.18l, while x _ _- _.t on the FeX-rich side, as given by [4.19]; consequently,
2
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[4.18] and [4.19] reduce to

x I = 1 - e-BAv_-# [4.20]

for the Fe-rich side of the phase diagram (k_ (x' --0) = 1), and

1 { e_B&__ . _2}xZ= T 1- {1- } [4.21]

for the FeX-rich side, respectively. Elimination of either x t or T from [4.20]

and [4.21] provides us with implicit expressions for the eutectic temperature,

Teu, or composition, Xeu , respectively, of the system, i.e.,

x...=

and

T ,u -- Teu(Tu_,&S_ t-, ,& C._',Tu_x,&S_x t -, ,& C_._)

where _M _ T_,x]Tu_, is the ratio of end-member melting temperatures. In

Figure 4.1, we display Xeu as a function of _M for different values of AS z-' ,

assuming AS l-e ---_AS_I-,--AS_x_-, and ACa,_8_-0=ACa,_._. As evident, the

eutectic composition will be more X-rich as the melting temperature of FeX

decreases below that of Fe, the more drastically as AS t-* increases. Assuming

Tua,=7250 K from above, the variation of Teu with _M displayed in Figure 4.2

shows that the eutectic temperature increases with _M for a given value of

AS z-" and decreases with AS z-e at a given value of _u- Consequently, Teu will

take on a minimum value for minimum values _u and &S t-_ , and &Cpt-a_-0.

Having established values for Tu_,, Tu._x, ASv.t-a and &C_ a above, we

now assume that &S_xt-' for X---O,S are given by their SP values, i.e.,

AS_o t-_ ---_ 22.0J/mol'K (Robie et al., 1978) and &Sin t-s --13.4J/mol-K

(Robie et al., 1978), respectively, and that either &C/_c-_-&C_£ s or

AC_--0--/xCa,_ _, in order to calculate ideal-mixing liquidi for Fe-FeX via

[4.20] and [4.21]. We display the results of this in Figures 4.3a-b for P=136
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Figure 4.1. Eutectic composition versus the ratio of end member melting tem-

peratures, showing the dominant influence of this property on the

eutectic composition. "Ds" represents AS/-a in units of R, and
AC_-a-_O for this calculation.
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Figure 4.2. Eutectic temperature versus ratio of end member melting tempera-

tures referenced to T_--7250 at P--330 GPa. "Ds" has same
meaning as in Figure 5.
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GPa, the pressure at the core-mantle boundary (CMB), and in Figures 4.4a-b

for P---_330 GPa, the pressure of the outer-inner core boundary (ICB). As evi-

dent, the value of _Cp _-' affects mainly the curvature of the liquidus, while

AS t-6 affects its slope. As implied from Figure 4.2, we obtain the minimum

value of Teu for the minimum value of AS t-' and AC_t-a_0 in Figures 4.3a-b

and 4.4a-b. Via the results of Figure 4.1, we also see that, because

T_T_<I while T_/T_>I, the Fe-FeS eutectic composition shifts

toward the FeS rich side of the system, whereas the Fe-FeO eutectic composi-

tion falls toward the Fe-rich side, both at 136 GPa and 330 GPa. The

significantly higher melting temperature of FeO as compared to Fe or FeS (Fig-

ure 3.1) at a given pressure suggests that this compound is relatively stable at

high pressures and temperatures, and probably remains largely associated dur-

ing melting. In this case, it is reasonable to assume that the liquidus and

solidus coincide in the Fe-O system at the composition FeO, as done above.

For these very same reasons, of course, this assumption is suspect for the Fe-S

system, i.e., FeS is less stable as a solid than either Fe or FeO, hence more

likely to melt incongruently that FeO; further, since the effective radii of Fe and

(metallized) S atoms at high pressure are apparently almost identical (Boness et

al., 1986).

As pointed out by numerous workers (e.g., Stevenson, 1981), the OC is

most likely a mixture of Fe, Ni and a number of other elements X i whose pres-

ence is required to lower the melting point of the OC below its temperature.

Besides the usual cosmochemical considerations, the idea that these elements

must have a mean atomic weight significantly less than Fe or Ni rests princi-

pally on the observation that the seismically constrained density profile of the

OC is _-_10_ lower than that of shock-compressed Fe at the same pressure.

More recently, Brown and McQueen (1982) compared their experimental results

for elastic-wave velocities in shock-compressed Fe with the outer core seismic
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Figure 4.3. Model temperature versus mole _oX in the Fe-FeO (part a) and
Fe-FeS (part b) systems at the pressure of the core-mantle boun-

dary (CMB), 135 GPa. "Ds" and "Dcp" stand for /xS t-a and
/xC_ -a for the indicated end-member
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0

Q

velocity profiles. The value of either of of these comparisons (again, at the

same pressure) rests strongly on a knowledge of 1) the temperature difference

between shock-compressed Fe and the OC and 2) the effect of mixing other ele-

ments with Fe under core conditions (e.g., Birch, 1952; Jeanloz, 1979). Consid-

ering that seismic density profiles depend on velocity profiles and models, the

velocity comparison should be more decisive than that for density, at least from

the seismic viewpoint. As noted by Stacey et al. (1981), uncertainties in the

temperature profile of the OC, combined with uncertainties in the seismically

constrained density profile, may admit, from the density viewpoint alone, the

possibility of no light component. Since the OC density profile is inherently less

well constrained than the velocity profile, the observation that the OC does not

support shear in the seismic frequency band in concert with the idea that

T_Toc together constitute perhaps the the most compelling evidence for the

OC to be a liquid Fe,Ni-X i mixture. With this in mind, we note that, as calcu-

lated above, the melting temperature of FeO is about 1500 K greater than that

of Fe at 330 GPa, which is in turn about 1000 K greater than that of FeS at

this pressure, we note that calculated Fe-FeO eutectic compositions at 330 GPa

(15-20 mole % O) are less than 25 mole % O, while calculated Fe-FeS eutectic

compositions at 330 GPa (23-30 mole % S) are generally greater than 25 mole

% S. The mass density of the Earth's outer core just above the inner core

boundary is approximately 12160 kg/m 3, and we note that this is also the den-

sity of an ideal mixture of 93 mole % Fe and ? mole % S (i.e., 14 mole _ FeS),

and a similar mixture of approximately 72 mole % Fe and 28 mole % O (56

mole % FeO). Consequently, these calculations and considerations imply that

an O-rich outer core is more likely to lie on the FeO-rich side of the Fe-FeX

eutectic, while an S-rich outer core is more likely to lie on the Fe-rich side of

the Fe-FeX eutectic.

O
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Figure 4.4. Model temperature versus mole _oX in the Fe-FeO (part a) and
Fe-FeS (part b) systems at the pressure of the outer-inner core

boundary (ICB), 330 GPa.



- 358 -

J

i.

\

a_

0

co
II

"1
0006

I

0009

: __
,

o I I_1

:l''
: I •

: I I
• I I

I

0

W

I 0

O00g

(_) eanl_aedme.l,



- 35g -

I

q

0
_9

II

__ '\

_'e

0 !

: I o o

: i I .

I I

: o t
: I

f
f

F
H

_s

..7

/

\
\

I
I

I

I
I

o
#

I
f

0006 0009

(>I) _.m_._ I_d__

,Q

0

¢)

O00B



- 360-

Comparing the Fe-FeO eutectic compositions in Figure 4.3a and 4.4a, and

the Fe-FeS eutectic compositions in Figures 4.3b and 4.4b, we see that the

eutectic compositions in both of these systems are relatively insensitive to pres-

sure. This is largely due to the fact that _ which controls Xeu as shown in Fig-

ure 4.1, is insensitive to pressure for both Fe-FeS and Fe-FeO. The eutectic

temperatures, however, vary between about 4000 and 6000 K between 136 and

330 GPa. Assuming AS t-a _-_ln2R is a reasonable lower-bound to AS t-a , then,

the temperature of the outer core must be above this value to remain a liquid

Fe-X mixture. As can be seen in Figure 4.5, this idea implies that current esti-

mates of the temperature profile of the outer core, bounded below by that of

Brown and Shankland (1980), and above by that of Stacey (1977), are 1000-1500

K too low, and should be above approximately 4000 K at 136 GPa and 5000 K

at 330 GPa. Also, with a temperature of .._3000K at the top of the D" region,

for example, this implies a thermal boundary layer _..1000-1500 K somewhere in

the mantle, possibly also supporting the need of multiple boundary layers in the

mantle (e.g, Jeanloz and Richter, 1979; Spiliopoulos and Stacey, 1984), a larger

contribution from primordial heat to the current heat flux out of the Earth, and

a larger initial energy bugdet for the Earth.

§5. Summary

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO

provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO

systems in the pressure range corresponding to the earth's outer core. The

liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986)

places constraints on the temperature and other properties along the liquidus

above the range of their data. The temperature along the best-fit Fe liquidus is

5000 K at 136 GPa and 7250 K at 330 GPa, which is somewhat lower than that

implied by the Hugoniot results (_ 7800 K). This discrepancy may be due to
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Figure 4.5. Temperature versus pressure along the model Fe, FeS and FeO

melting curves, as well as those along the minimum temperature

(/xS I-8--Rlog2, /xC_-S_0) Fe-FeS and Fe-FeO eutectics com-

pared to outer-core temperature profiles of Stacey (1977; triangles)

and Brown and Shankland (1980; diamonds). Along the Fe-FeS

eutectic, the mole % X ranges from 25% at the CMB to 27_0 at

the ICB, while along the Fe-FeO eutectic it ranges from 13% at

the CMB to 12°_ at the ICB.
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the reshock effect discussed above, or some inaccuracy in the extrapolation,

presuming the Hugoniot results represent the equilibrium melting behavior of

Fe. Constraints on the solidi of FeS and FeO from the comparison of data and

solid-state model calculations imply that FeS and FeO melt at 4610 K and 5100

K, respectively, at 136 GPa, and 6150 K and 8950 K, respectively, at 330 GPa.

Calculations for the equilibrium thermodynamic properties of solid and liquid Fe

along the coincident solidus and liquidus imply that the entropy of melting for

Fe is approximately independent of pressure at a value of approximately R

(where R is Ryberg's constant), while the change in the molar heat capacity

across the transition increases with pressure from approximately 0.5 R to 4R

between standard pressure and 330 GPa. We use these constraints to construct

ideal-mixing phase diagrams for Fe-FeS and Fe-FeO systems at outer core pres-

sures, assuming that Fe and FeS, or Fe and FeO, respectively, are the solid

phases in equilibrium with the liquid Fe-FeS or Fe-FeO mixtures, respectively.

The composition of the Fe-X (X--O or S) liquid mixture relative to the eutectic

composition of the Fe-FeX system determines whether Fe or FeX will solidfy at

the liquidus. For these ideal mixing calculations, the eutectic composition is

controlled by the ratio of the end-member (i.e., Fe and FeX) melting tempera-

tures at a given pressure. If Fe and FeX have the same melting temperature,

for example, the eutectic composition is 25 mole o_ X; if the melting tempera-

ture of FeE is greater or less than Fe, the eutectic composition will be displaced

to more Fe or FeX rich compositions, respectively. Since, as quoted above, the

melting temperature of FeO is about 1500 K greater than that of Fe at 330

GPa, which is in turn about 1000 K greater than that of FeS at this pressure,

we note that calculated Fe-FeO eutectic compositions at 330 GPa (15-20 mole

O) are less than 25 mole % O, while calculated Fe-FeS eutectic compositions

at 330 GPa (23-30 mole 90 S) are generally greater than 25 mole % S. The

mass density of the Earth's outer core just above the inner core boundary is
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approximately 12160 kg/m 3, and we note that this is also the density of an ideal

mixture of 93 mole % Fe and 7 mole % S (i.e., 14 mole v/o FeS), and a similar

mixture of approximately 72 mole % Fe and 28 mole % O (56 mole % FeO).

Consequently, these calculations and considerations imply that an O-rich outer

core is more likely to lie on the FeO-rich side of the Fe-FeX eutectic, while an

S-rich outer core is more likely to lie on the Fe-rich side of the Fe-FeX eutectic.

The temperature of the Fe-FeS eutectic are lower than the Fe-FeO eutec-

tic, being approximately 5000 K at 330 GPa. Note that the eutectic tempera-

ture represents a lower bound to temperatures at the outer-inner core boundary

under the hypothesis that this boundary represents the liquidus in an Fe-X mix-

ture. Eutectic and end-member melting temperatures in both the Fe-FeS and

Fe-FeO systems imply, in the context of the outer-inner core boundary-phase

boundary hypothesis, that previous widely-accepted temperature profiles for the

outer core, ranging from ,_3000 K at the 136 GPa, the core-mantle boundary,

to _4200 K at 330 GPa, the outer-inner core boundary, are about 1000-1500 K

too low. This possibility implies that at least one boundary layer of 1000-1500

K exists in the mantle, possibly at its base in the D" region.
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§6. Appendix A: Equilibrium Thermodynamic Model for a Liquid

The equilibrium thermodynamic properties of liquid-Fe discussed in the

text are referenced to those of a hard-sphere liquid via the Gibbs-Bogolyubov

(GB) inequality (e.g., Isihara, 1968; Hansen and McDonald, 1975). This
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inequality states that the equilibrium thermodynamic Helmholtz free energy

(HFE) of the liquid, F_iq(T,p), is bounded above by the I-{FE of an "equivalent"

system of hard spheres which interact with each other (to first order) as do the

actual "ions" or "particles" of the liquid. For a liquid metal, the GB inequality

takes the form

Fliq __< Fm0d = F,s + F_rr + F,n [A.I]

Note that this HFE has units of Joules. In this expression, F m is the HFE of

the hard-sphere reference system, Fret is the "ion-ion" interaction contribution

to F, and Fel is the electronic contribution to F. F m may be obtained from the

"_1" *_''--'""J u,-l_,Lc_v,v=.¢ vx ,._uu, v,,., iv(],* LLa,_:_X.L_I.a CkUU. =._qUn-I lI21_, JL UUt_] UI bU_ Y ll'l:'tl

expansion (e.g., Hansen and McDonald, 1975). As discussed by Foiles and Ash-

croft (1981), the virial form of F_, may provide a better approximation to F_s

and the liquid pressure than the compressibility form, since the virial form

directly represents the pressure, and is one derivative less removed from F.s

than the compressibility form. Since we are interested in the pressure and tem-

perature, as discussed below, we use the virial form of Fm. For a single-

component liquid of N particles, occupying a volume V, this is

Fvir._ Fi 8 + NksT{ 6_ } [A.2],

respectively, where r/__ rpNd3/6 iS the hard-sphere packing fraction, equal to

the product of the volume of a single sphere rdZ/6, and the number density of

spheres, p, ---- N/V. Note that d is the diameter of a given sphere. In [A.2], Fig

is the HFE of a single-component ideal gas, i.e.,

Fig-- NksT[In(psA 3) - 1] [A.3].

In [A.3], A -- h/[2_rmksT]_, h is Planck's constant, m is the mass of a single

particle (sphere), and k s is Boltzmann's constant.
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The total pair-interaction contribution to F, Fn,,v is given to first order by

the relation

f0 °
Fn¢ r -- 27r(N-1)p N [¢(r) - Cm(r)]gm(r)r2dr [A.4]

(e.g., Mansoori and Canfield, 1960). In [A.4], ¢(r) describes the interaction of

two liquid particles at a distance r away from the center of a given particle,

gin(r) is the hard-sphere radial distribution function, defined such that

4rpNr_gm(r)dr represents the average number of hard-sphere at a distance r to

r+dr away from a given sphere. Also, _hs(r) describes the interaction of two

hard-spheres, i.e.,

oo r<d_b_s(r) "_ 0 r>d [A.5].

Since g_s(r)is proportional to exp[-fl_s(r)], with fl _ 1/kBT , we see that, from

[A.5], g_s(r) ----- 0 for r< d. In this case, the product ¢m(r)gHs(r) is always zero.

Consequently, [A.4] may be written

fd°° F_r-- 27r(N-1)ps r)g_s(r)redr [A.6],

since the integral from 0 to d is zero via the definition of era(r) in [A.5]. This

expresses the physical idea that ions are unlikely to interact at distances closer

than their "hard-sphere" diameters. As such, interaction closer than r--d con-

tribute little to F, and this is idealized to nothing in the model. To evaluate

[A.6] further, we must assume forms for ¢(r) and gin(r). We assume ¢(r) has the

Yukawa form

$
¢(r)= --a

r

Then we may put [A.6] into the form
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F_r = 21r(N-1)ps_ e-×r[rgm(r)]dr

= 27r(N-1)pse L{rg_(r)}(x) [A.8].

In [A.8], L is the Laplace transform operator. This form is advantageous

because L [rgss(r)] is known analytically for the Percus-Yevick approximation to

gin(r) (Wertheim, 1963). Note that [A.7] represents only repulsive pair interac-

tions. To assess the possibility of attractive interactions in liquid-Fe, which

may be important at lower pressures, we add an attractive term to [A.5] and

obtain the so-called "double Yukawa" potential, i.e.,

[A.9].

In [A.9], a represents the distance away from the center of each sphere where

attractive and repulsive interactions balance, i.e. _b(a) ---- 0 (equilibrium), while

X-l is the characteristic length scale of repulsive interaction, and w -1 that for

attraction interactions. Physically, we expect ),>w, since repulsion and attrac-

tion are dominantly short- and long-range interactions, respectively. In this

case, note that _b(r)>0 for r<a, and _b(r)<0 for r>a.

If wesubstitute[A.glinto[A.SI,weobtain

Fn,,r -- 2_rpn(N-1)ae {e×a - e_ } [A.10].

Nondimensiona]izing r by d, the hard sphere diameter, in [A.10],we have

Fn, rr--12(N-1)_r/{ eX' L{_gm(_)}(X*c)- eW*L{_gm(_)}(w*c)} [A.11]

with _ __ r/d, ),* _- ),a, w* _ wa and c _ d/a. From Wertheim (1963), we

have
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with

= xL(x)

12rilL(x)+ S(x)e×]
[A.121

L(X) = 12_?[(1+2rl) + (l+_-rl)x]

and [A.131

S(X) _-_ (1-17)3X z "+"6r/(1-rl)X 2 -+- 18r12x - 12_7(1+2r/) ,

when gin(r) is approximated by the Percus-Yevick relation (Percus and Yevick,

1959). Putting [A.12] into [i.ll], we obtain

where

H(c,y;p) _ pe p L(pc,r/)
[L(pc,y) + S(pc,rl)e "c]

[A.15].

F,l = -2r(p)T 2

Fermi temperature) Sommerfeld expansion

[A.16].

In [A.16], r(p) is the density of electron energy states at the Fermi energy (sur-

face); it is commonly given the form (e.g., Wallace, 1972)

F(p)- F(pi)(pi/p) "_",

where % is the electronic thermostatic Gr_neisen's parameter of the liquid in

this case.

We now nondimensionalize F by the product of the number of particles in

the system, N, and ksT , such that f---- ]_F/N -----F/NksT. Also, we define a non-

dimensional temperature, T* -- ksT/e, and a nondimensional number density,

p* __ p_3. With these, we rewrite [A.1] as

In the text, we represent Fel by its low temperature (T much less than the
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with

fliq( T ,P,)--fm_ = fm(T*,P_,r/) + f_r(T*,r/,c;k*,w*) + fel(T ,PN) [A.17]

vir , , , , 6r/
fv (T ,Pwr/) _----fig(T ,PN) + (l-r/) + 2In(I-r/) [A.18],

fis(T*,p_) ---- ln(p_)- 23--1n(T *) + 3In(A*)- 1 [A.19],

1
f_-r ------ [i-I(c,rt;k*) - H(c,r/;w*)] -- _1 AH(c,rt;),*,w*) [A.e0],

T* T*

and

f::_= l r,(p,)T,__ 1 e_r(o*.)T* [A.21],
z 2 Nl_ .....

where A* -- h/a_, and (N-1)-_N for a "macroscopic" liquid. In [A.171 and

[A.18]-[A.21], ),* and w* are constants, as is a from the Yukawa potential. So

now we have fmod * *-- fmod(T ,ps, r/,c) explicitly. In this case, the total differential

of fm_ is

---- dT*+ { 0f--_/dfm°d { 0fm°d } _'1,c T',,I,c0T* 0p_ ] dp_

dr/+ {_}T.,t_,,+{ Or/ }T*,_,c 0c dc [A.22].

Since r/----- 6P_C3 , however, [A.22] may be written

with

dfmod -- COfm°d dT* + dp_ + dc

OT* _c Op_ T*,c 0C T',p_
[A.23]

{_ [A.24],
* i)p_ T',c,y Or/ OPN J c

I{ [A.25],
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and

{ 0_..2__Op; }c

Now, in equilibrium, fliq

here. Consequently,

=, [A.2o]

= fnq(T*,p_) for the single-component system we have

dfliq

0T* ] t_ T"

From [A.27], at constant T* and p_, we have dfli q

we have, at constant T* and p_

{0t__} dedfm°d } T"_ = 0C T°,_

therefore, to have dfmo d } T',_ = 0 for arbitrary de, we require

for fmod to be an equilibrium thermodynamic state function.

[A.28] states, using [A.18]-[A.21], that

a0 +
/ Or/ j T.,p_,c[

where

d4n) •

= 0, while from [A.23],

[A.28]

More explicitly,

T*,p_

+f2)} 3'c =o

[A.2O]

We may rewrite [A.29] as an implicit function for the equilibrium value of c, i.e.

1 0AH + -- -- 0II(T*,c,rt)
c') + _ _ v._., _ r._._c

¢.?- "_

[A.30]
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and we may solve this simultaneously with

h(p;.c,.)=  /8p;c3= 0 [A.a]

for c or _7 as a function of T* and p_. Relation [A.31] comes from the definition

of the packing fraction; together with [A.30], it gives us two equations among 4

unknowns (cp?,T* and p*). Mathematically, any two of these may be con-

sidered, via [A.30] and [A.31], as independent; T* and p_ are the logical choice

from the equilibrium thermodynamic perspective. On this basis, we designate

the values of c and y given implicitly by [A.30]-[A.31] as _ = _(W*,p_) and

@ _--- @(T*,p_), the equilibrium values of c and rh respectively, for a given equilib-

- _- ,e_j. *- _,-_,_, ,_-.v _wu w _ue 4 variables may be considered

independent. For [/%.28] to constrain a minimum value of fmod, and so a least-

upper-bound to fnq(T*,p_) via the GB inequality, we also require

> o [A.32].
0C2 } T*,p_

Consequently, with fmod(T*,p_c,l?)satisfying [A.28] and [A.32], and _ and O con-

strained from [A.30]-[A.31], we may write

fliq(T*,p_) _ fmod(T*,p_)

-- fis(T*,p_)+ fm[@(T*,p_)]+ --I AH[_(T*,p_),#(T*,p_,)]+ f,,(T*,p_;)
T °

as the basic model relation for the equilibrium HFE of the liquid.

we may derive all equilibrium thermodynamic properties from

example, the pressure is then

[A.33]

In this case,

[A.33]. For

=_{ 0(F/N)0(V/N) }
T,N 0p N 1 T*

[A.34]

Defining a nondimensional pressure, p _ _P/ps, and substituting [A.18]-[A.21]
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into [A.33], we have

{ [vlOPN I T" T"

Now, from the definition of the packing fraction, we may write

"a_._ = _ + .___.p,_l._p_]P_ ap_ T" T"

Substituting this into [A.35], we obtain

p-l+_ f_l)+ T -_ _

{+

_T* #

+ Iff,F*T*

S

[A.35].

[A.36].

[A.37].

By [A.29] the third term on the right-hand side of [A.37] is zero.

Now, the entropy is defined by

and S has units of J/K. A natural nondimensional entropy is then

Therefore,

[A.38].

[A.39]
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3 fi _fm_{f_Z)_l - 12 "_'7[ 0AH 0_

1 ["_c J 0 0T*
) [A.40]

T*

Now, from the definition of the packing fraction, we have

m = -_'_'r} •0T* G
[A.41].

Putting this into [A.40], we obtain

3

s= _- fi,- f._

1 + I
0T* p_

+ F*Tl'A.42]

From [A.29], the fourth term on the right hand side is zero. Therefore,

3

s = _ - fi,- f. + r'T* -- _,- f. + r'T* [A.43]

From [A.3g], we have the nondimensional specific heat at constant volume, i.e.,

[A.44]

where C v has units of J/particle.K. Other properties include the change in pres-

sure with temperature at constant volume and number of particles, i.e.,

[0P} _ 0 }V N[/__lpps ]ps"/Cv --=cd_ _ "_ V.N 0T .

0p, [A.45].



- 374 -

Therefore,

"TCv_---- p + T*[ 0#] [A.46]

From [A.38], we have

a_

+ { [fO)+ f/f (2)1 + iAH,0_+3 f/AH,0_ }[ ._}_0_#

+ _-v,r*T* [A.47].

The isothermal bulk modulus is given by

[ oe ) , {9 }T []__lpNp ]Ic,-a _ z.N=p_

= /_";PN[P + P_[ Op_}O"-P-P

The nondimensional form of this is then

] [A.48].
T*

_P [A.49].

We note that the macroscopic structure factor of the liquid, a(O), is equal to

1/lc r. From [A.38], we have

':lo_l_.=_{'-'"+¢-."",o+_*'+¢-.,,H°o,}
+{-_,s,,+_,,,,°+_,:,,,+_,,,,°o,+_,,,,o_i':{o_}c Op_

_ I_/e2F*T*

T*

[A.50].
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The second term on the right-hand side of this last expression may be written

By [A.29] and the fact that

AH, e0 = AH0e,

we see that this second term is actually zero. Consequently,

[A.51].

With [A.33]-[A.51], we may calculate equilibrium thermodynamic properties that

are defined by ratios of the derivatives of f_od" For example, the equilibrium

thermodynamic Gr_neisen's parameter is given by

,_= _--% [A.521,
ev

while the coefficient of thermal expansion is

Kr T*k.r e

From this, a natural nondimensional form of a is

e "YCv [A.54]
ks kTT*

The nondimensional specific heat at constant pressure is then

c_= _(I+ _'vT*) [A.55].

And the nondimensional isentropic bulk modulus is given by

ks _ -- I% + kra-yT = I% + pN-y_ _----_T
PN 1_ PN

= k_+ (v_)v [A.5O].
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Lastly, the velocity of sound in the liquid is given by

where N^ is Avogadro's number and M is the molar mass of the liquid.

nondimensional form of v_ is then

v; = [_T'I_

[A.57],

The

oi2 I

From [A.30], we have

[A.58].

To calculate the above expressions for the equilibrium properties of the liquid,

we require an expression for (0_?/0W*)_. From [A.30], [A.31] and the implicit

function theorem, we have _ = _(W*,p_) and _ = _/(T*,p_)in equilibrium. In

many of the above expressions, we have used the relation, from [A.31]

P_ N 0T* p_

m
3[_AH,e + 3_TAH 0]

= o [A.59].

6@[T*f (1) + AH0 ] + O_/2[T*f(2) + AH00] + 6_#AH,0 e + _AHee

[A,60],
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the desired expression for the change in the equilibrium packing fraction with

nondimensional temperature at constant nondimensional number density.

To fit this model to the experimental Fe melting data of Williams and

Jeanloz (1986), given as T_(P)±AT_(Ap), we require an expression for the tem-

perature as a function of pressure in the liquid at the conditions along the phase

3_AH_ } [A.61]+

From [A.38], we have a relation

boundary. Rearranging [A.30], we obtain

T -- ET*(_,_;X*,W*)= --E {3{/f(') _AH,e

for temperature in the liquid, with E _- e/l_

for pressure in the liquid, i.e.,

P
R

--- "_" E pp'(c,_/;_k',W*,E)

MR {_?AH#+(I+_f(I,)T,.b_.%_.F(p)T }
"-" _Ep I E ,= [A.62],

where F(p) is assumed to be a known function of mass density, p, and so not a

"free" parameter. Now, using the definition of the packing fraction, we may

write _ as a function of mass density, p, and packing fraction, _, i.e.,

-_ "_p [A.63],

where we have introduced _"_ p_/p, which is related to a, i.e.,

O"----- _" _ [A.64].

With these, we have

T = ET*(p,{/;k*,_v*,f) [A.65]

and

R

P -- _- E p p*(p,{];X*,W*,E,_) [A.66],
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giving us 2 equations relating 4 variables, i.e., P, T, p and _/, and 4 parameters,

i.e, _., k*, w*, _'. These are the expressions we use in the text.

Liquid-state transport properties

With the hard-sphere model for Fliq(T,p), we may also estimate near-

equilibrium transport properties for Fe from the theory of Longuet-Higgens and

Pople (1956) for a dense fluid of hard spheres. They derive the following rela-

tionships for the shear viscosity, #, bulk viscosity, i¢, and coefficient of self-

diffusion, D, assuming g,s(r) is independent of the rate of strain, and for the

thermal conductivity, k, assuming gin(r) is independent of the temperature gra-

dient:

and

/_ -- 5_rd---_ -- T* _ _/(p - 1) [A.67],

5

._ k'_

2m

D = (p: i) [A.70],

respectively. As discussed by Longuet-Higgins and Pople, the absolute values of

these expressions do not reflect the influence of attractive interparticle forces.

They suggest that this may be remedied by replacing the pressure, P, with the

"kinetic pressure," T(0P/BT)v to account for the idea that attractive forces

reduce the effective pressure in a real fluid below P, the external pressure,

because they result in a decrease of internal ("cohesive") energy with density.

The pressure and kinetic pressure are related by the identity
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[) I_'cOE T=T _ V- P [A.71]

where E-_F+TS is the internal energy. From this, we see that their suggestion

implies that (aE/cOV)r_0; this is strictly true for a fluid of hard spheres, since

F-I-TS----3k_T----E for such a fluid. Since the liquid-state model used in this work

is based on a potential that includes attractive interparticle interactions, we

incorporate this suggestion into our calculations by replacing p with "7% in

[A.67]-[A.70], where "7cv is given by [A.46] above.

§7. Appendix B: High-Temperature Solid-State Model Expressions

In this appendix we document the relation between the exact solid-state

model relations based on [3.1] and the high-temperature approximation (equa-

tions [3.7]-[3.10]) used in the text. From the expression for F(T,p), [3.1], we

have 1) the pressure:

0F -------P(0,p)+ -_p_(xD)T + _-pwflTP(T,p)--p _ T

with

2) The molar entropy:

P(O,p) _- p + -_.vRpOdTv ,

S(T,p)---{ aa-_--_}v--3uR{4F-_(XD)-In[l-e-XD]} + nT

3) The isothermal bulk modulus:

K-r(T,p) _- p -" K(0,p)
T

+ --Wp%(_- _-3%)N(×o)T + g_,Rp% [eXD_11

[B.1]

[B.2],
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1

+ -'_pw(1 - w)f_T 2 [B.3],

with

K<o,,)-P<o,,)+_{_{d,

4) The molar heat capacity at constant volume:

+p2{ d2¢}} +p{OVR O" %)}-i_--% ,>t_- ,dp 2

Tf v_2F / f 3_D ]

and 5) the change in pressure with temperature at constant volume (density),

S._._

,, o =

3vR P'TD{ 4F:_(_D) 3_CD pw+ T [B.5 iM [e g-- 1] } + "

The high-temperature approximations (_v--:OD(P)/T << l ) to P, S, C v and K r

may be obtained from [B.2]-[B.5] by expanding ED(_D) and the other _D functions

into their high-temperature forms, i.e., as _D-'*0,

-- --x+ lx2+ .-- dx
(_v)3 Jo [ 2 12 J

3
-- 1 - _- _v + + _D2 + O(_3) [B.6],

ln[1 -e-_] = lnfD + ln(1 - 1_<>+ .--)

__ ln_D_ 1 1 2 [B.7],
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and

1 1----- 1 - "_'_o + _2 + O(_3)

Putting these into [3.1] in the text, we obtain, to O(_3):

{ 1} 1F(T,p) -- (I)(p) + 3vR ln_D- 1 + _2 T - _[2T _

[B.S].

[B.9],

with

{ 1} 1P(T,p) ---- P(0,p) + 3vRp'Tv 1 + _2 T + ._-pwaT 2 [B.10],

i_ = K(0,p)

{d,}P(0,p)----p _ ,

S =3vR _-ln[_v] + _2 + f_T

1

with K_0,p) now given by

and

1-pw(l.--w).._.. T 2

f [ dei_o,p) ---p,2p| --
( I dp 2

P'_Cv _--- _K'r _ 3vR " 2"_p%[l - _2] + pw T

1

Cv --- 3vR [1 - _0 _2] + f_T

These are the basic solid-state model relations used in the text.

[B.11],

[B.121,

[B.13],

[B.141.
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